Decidable Fragments of First-order Modal Logic

Anantha Padmanabha IIT Madras

joint work with Varad Joshi, Mo Liu, R. Ramanujam and Yanjing Wang

CAALM LIPN, Université Sorbonne Paris Nord

5 June 2025

Extends Propositional Logic with Modal Operators □ and ◊

Generalizes various logics

Logic Variant	Modal Interpretation
Temporal Logic	Time
Epistemic Logic	Knowledge
Doxastic Logic	Belief
Deontic Logic	Obligations
Dynamic Logic	Actions

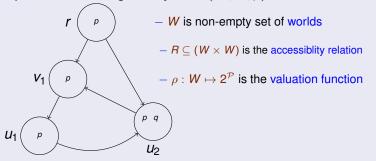
• Example : $\Box(p) \lor \Diamond(q)$

Syntax

$$\varphi := \mathbf{p} \mid \neg \varphi \mid \varphi \wedge \varphi \mid \Box \varphi \mid \Diamond \varphi$$

Structures

A Kripke structure is given by $M = (W, R, \rho)$

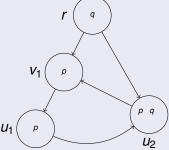


Syntax

$$\varphi := \mathbf{p} \mid \neg \varphi \mid \varphi \wedge \varphi \mid \Box \varphi \mid \Diamond \varphi$$

Semantics

A Kripke structure is given by $M = (W, R, \rho)$



$$M, w \models p \text{ if } p \in \rho(w)$$

$$\begin{array}{c} \textit{M}, \textit{w} \models \Box \varphi \text{ if for every } \textit{w}' \in \textit{W} \\ \text{if } (\textit{w}, \textit{w}') \in \textit{R} \text{ then } \textit{M}, \textit{w}' \models \varphi \end{array}$$

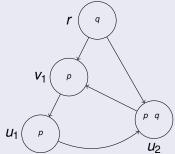
Bundled Fragments

Syntax

$$\varphi := \boldsymbol{p} \mid \neg \varphi \mid \varphi \wedge \varphi \mid \square \varphi \mid \diamond \varphi$$

Semantics

A Kripke structure is given by $M = (W, R, \rho)$



$$M, w \models p \text{ if } p \in \rho(w)$$

$$M, w \models \Box \varphi$$
 if for every $w' \in W$ if $(w, w') \in R$ then $M, w' \models \varphi$

$${\color{red} {\it M}}, {\color{red} {\it w}} \models \Diamond \varphi \ {\rm if} \ {\rm there} \ {\rm is} \ {\rm some} \ ({\color{red} {\it w}}, {\color{red} {\it w}}') \in {\color{red} {\it R}} \ {\rm st} \ {\color{red} {\it M}}, {\color{red} {\it w}}' \models \varphi$$

Satisfiability Problem

- Given a formula φ , is there some model M and w such that $M, w \models \varphi$?
- Also called the Synthesis Problem

Satisfiability Problem

- Given a formula φ , is there some model M and w such that $M, w \models \varphi$?
- Also called the Synthesis Problem
- Decidable (PSPACE-complete)

Satisfiability Problem

- Given a formula φ , is there some model M and w such that $M, w \models \varphi$?
- Also called the Synthesis Problem
- Decidable (PSPACE-complete)
- Can be embedded into
 - [Scott; Kolaitis et.al] Two variable fragment of FO
 - [Andreka et.al,] Guarded fragment of FO
 - [Pratt-Hartmann et. al] Fluted fragment of FO

Extends First Order Logic with Modal Operators.

Extends First Order Logic with Modal Operators.

• Example: $\forall x \Box (P(x)) \lor \exists y (\Diamond Q(x,y))$

Variant	Interpretation
Time	For every process, the process will always access only its local variables or it synchronizes with another process in some future
Epistemic Logic	For every x, Alice knows that x is at the party or considers it possible that x has quarrelled with some y

Also suitable to model evolving graphs, databases etc.

Syntax

$$\varphi := P(\overline{x}) \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x \varphi \mid \Box \varphi \mid \Diamond \varphi$$

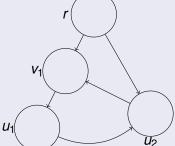
Syntax

Propositional Modal Logic

$$\varphi := P(\overline{x}) \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x \varphi \mid \Box \varphi \mid \Diamond \varphi$$

Semantics

A Kripke structure is given by $M = (W, D, \delta, R, \rho)$



- W is non-empty set of worlds
- $-R \subseteq (W \times W)$ is the accessiblity relation

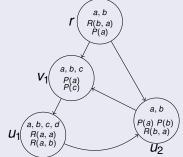
Conclusion

Syntax

$$\varphi := P(\overline{x}) \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x \varphi \mid \Box \varphi \mid \Diamond \varphi$$

Semantics

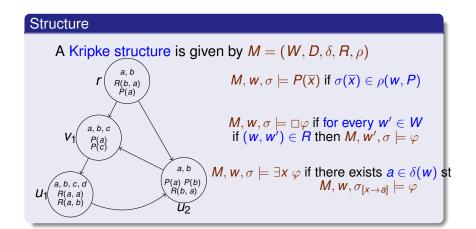
A Kripke structure is given by $M = (W, D, \delta, R, \rho)$



- W is non-empty set of worlds
- $-R\subseteq (W\times W)$ is the accessiblity relation
- D is non-empty set of Domain
- $-\delta: W \mapsto 2^D$ is the Local Domain
- $-\rho$ gives valuation for predicates at every world over local domain

Bundled Fragments

First Order Modal Logic



Conditions on Local Domain

• Increasing Domain models: If $(u, v) \in R$ then $\delta(u) \subseteq \delta(v)$

Conditions on Local Domain

- Increasing Domain models: If $(u, v) \in R$ then $\delta(u) \subseteq \delta(v)$
- Constant Domain models: Local Domain is same at all worlds

Given a FOML formula φ , is there some model M, w and σ such that M, w, $\sigma \models \varphi$?

Given a FOML formula φ , is there some model M, w and σ such that M, w, $\sigma \models \varphi$?

Bad news

First Order Logic is a fragment of First Order Modal Logic

Given a FOML formula φ , is there some model M, w and σ such that M, w, $\sigma \models \varphi$?

Bad news

- First Order Logic is a fragment of First Order Modal Logic
- What about Modal extensions of decidable fragments of FO?

Like Unary predicates, 2 variable fragment, Guarded, Fluted...

Satisfiability problem for FOML

• Undecidable even when atoms are restricted to unary predicates [P(x), Q(x)..].

Note: FO with unary predicates is decidable.

Satisfiability problem for FOML

• Undecidable even when atoms are restricted to unary predicates [P(x), Q(x)..].

Note: FO with unary predicates is decidable.

Proof [Kripke, 1962]

 Reducing satisfiability of FO(R) [where R is a binary predicate] to FOML satisfiability. • Undecidable even when atoms are restricted to unary predicates [P(x), Q(x)..].

Note: FO with unary predicates is decidable.

Proof [Kripke, 1962]

- Reducing satisfiability of FO(R) [where R is a binary predicate] to FOML satisfiability.
- Translate R(x, y) as $\Diamond [P(x) \land Q(y)]$.

Ex.
$$\forall x \exists y \forall z \ (R(x,y) \to \neg R(y,z))$$
 is translated to $\forall x \exists y \forall z \ (\diamondsuit(P(x) \land Q(y)) \to \neg \diamondsuit(P(y) \land Q(z)).$

Satisfiability problem for FOML

• Undecidable even when atoms are restricted to unary predicates [P(x), Q(x)..].

Note: FO with unary predicates is decidable.

Proof [Kripke, 1962]

- Reducing satisfiability of FO(R) [where R is a binary predicate] to FOML satisfiability.
- Translate R(x, y) as $\Diamond [P(x) \land Q(y)]$. Ex. $\forall x \exists y \forall z \ (R(x, y) \rightarrow \neg R(y, z))$ is translated to $\forall x \exists y \forall z \ (\Diamond (P(x) \land Q(y)) \rightarrow \neg \Diamond (P(y) \land Q(z))$.
- Any FO(R) formula is satisfiable iff its translated FOML formula is satisfiable.

More bad news!

More bad news!

All these fragments of FOML are undecidable:

Unary Predicates	Kripke	1962
Two variable fragment of FOML	Wolter &	2001
Guarded fragment of FOML	Zakharyaschev	

More bad news!

All these fragments of FOML are undecidable:

Unary Predicates	Kripke	1962
Two variable fragment of FOML	Wolter &	2001
Guarded fragment of FOML	Zakharyaschev	

Are there reasonable decidable fragments at all?

Source of Undecidability

- Two or more free variables inside the scope of modal operators.
- Unrestricted occurrence of quantifiers and modalities.

Can we restrict the syntax to avoid these to get decidable fragments?

Source of Undecidability

- Two or more free variables inside the scope of modal operators.
- Unrestricted occurrence of quantifiers and modalities.

Can we restrict the syntax to avoid these to get decidable fragments?

• Every modal formula has at most 1 free variable.

- Every modal formula has at most 1 free variable.
- Eg. $\forall x.\exists y \; \Big(\Box P(x) \to \diamondsuit \big(Q(y) \lor Q(x)\big)\Big)$ is NOT monodic formula

- Every modal formula has at most 1 free variable.
- Eg. $\forall x.\exists y \ \Big(\Box P(x) \to \diamondsuit \big(Q(y) \lor Q(x)\big)\Big)$ is NOT monodic formula
- Eg. $\forall x. \left(\Box P(x) \rightarrow \Diamond (\exists y. \ R(x,y)) \right)$ is monodic formula

- Every modal formula has at most 1 free variable.
- Eg. $\forall x.\exists y \; \Big(\Box P(x) \to \diamondsuit \big(Q(y) \lor Q(x)\big)\Big)$ is NOT monodic formula
- Eg. $\forall x. \left(\Box P(x) \rightarrow \Diamond \left(\exists y. \ R(x,y) \right) \right)$ is monodic formula

Theorem (Wolter, Zakharyashev; 2001)

Monodic FOML over unary predicates (unary predicates, two variables...) is decidable.

Source of Undecidability

- Two or more free variables inside the scope of modal operators.
- Unrestricted occurrence of quantifiers and modalities.

Can we restrict the syntax to avoid these to get decidable fragments?

Bundled fragment of FOML

Syntax

Given $\mathcal V$ (variables) and $\mathcal P$ (predicates), the bundled fragment of FOML denoted by Bundle is defined as follows:

$$\varphi ::= P\overline{X} \mid \neg \varphi \mid (\varphi \land \varphi) \mid \exists X \Box \varphi \mid \forall X \Box \varphi$$

where $x \in \mathcal{V}$, $P \in \mathcal{P}$.

Bundled fragment of FOML

Syntax

Given $\mathcal V$ (variables) and $\mathcal P$ (predicates), the bundled fragment of FOML denoted by Bundle is defined as follows:

$$\varphi ::= P\overline{x} \mid \neg \varphi \mid (\varphi \land \varphi) \mid \exists x \Box \varphi \mid \forall x \Box \varphi$$

where $x \in \mathcal{V}$, $P \in \mathcal{P}$.

- Note that dual of $\exists x \square$ is given by $\forall x \lozenge \varphi := \neg \exists x \square \neg \varphi$.
- Similarly dual of $\forall x \square$ is given by $\exists x \Diamond \varphi := \neg \forall x \square \neg \varphi$.

Syntax

Given \mathcal{V} (variables) and \mathcal{P} (predicates), the bundled fragment of FOML denoted by Bundle is defined as follows:

$$\varphi ::= P\overline{x} \mid \neg \varphi \mid (\varphi \land \varphi) \mid \exists x \Box \varphi \mid \forall x \Box \varphi$$

where $x \in \mathcal{V}$, $P \in \mathcal{P}$.

- Note that dual of $\exists x \square$ is given by $\forall x \lozenge \varphi := \neg \exists x \square \neg \varphi$.
- Similarly dual of $\forall x \square$ is given by $\exists x \Diamond \varphi := \neg \forall x \square \neg \varphi$.
- Standard \square can be defined: $\exists z \square \varphi$ where $z \notin \mathsf{Fv}(\varphi)$.

 Are bundled fragments interesting at all? What properties can they express?

- Are bundled fragments interesting at all? What properties can they express?
- Bundled fragments are motivated by [Wang] where formulas are restricted to the form ∃x□φ.
 Can model Know how, Know why...

- Are bundled fragments interesting at all? What properties can they express?
- Bundled fragments are motivated by [Wang] where formulas are restricted to the form ∃x□φ.
 Can model Know how, Know why...

Examples

- (Epistemic logic) Agent knows who killed Mary $\exists x \Box (killed(x, Mary))$.
- (Epistemic logic) Agent knows that someone killed Mary
 □(∃x killed(x, Mary)).

- Are bundled fragments interesting at all? What properties can they express?
- Bundled fragments are motivated by [Wang] where formulas are restricted to the form ∃x□φ.
 Can model Know how, Know why...

Examples

- (Epistemic logic) Agent knows who killed Mary $\exists x \Box (killed(x, Mary))$.
- (Epistemic logic) Agent knows that someone killed Mary
 □(∃x killed(x, Mary)).
- (Temporal logic) All clients have equal priority.
 ∀y ◊ (answered(y))

Decidability results

P., Ramanujam, Wang [2018]

• $\exists x \square$, $\forall x \square$ over increasing domain is decidable with arbitrary arity predicates.

Decidability results

P., Ramanujam, Wang [2018]

- ∃x□, ∀x□ over increasing domain is decidable with arbitrary arity predicates.
- ∀x□ over constant domain is undecidable with unary predicates.

Decidability results

P., Ramanujam, Wang [2018]

- ∃x□, ∀x□ over increasing domain is decidable with arbitrary arity predicates.
- ∀x□ over constant domain is undecidable with unary predicates.
- ∃x□ over constant domain is decidable with arbitrary arity predicates.

• Consider the formula $\forall x \Diamond \exists y \Diamond R(x, y)$

• Consider the formula $\forall x \Diamond \exists y \Diamond R(x, y)$

$$\mathcal{D} = \{a \}$$

• Consider the formula $\forall x \Diamond \exists y \Diamond R(x, y)$

$$\mathcal{D} = \{a, b\}$$

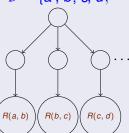
• Consider the formula $\forall x \Diamond \exists y \Diamond R(x, y)$

$$\mathcal{D} = \{a, b, c\}$$

Propositional Modal Logic

• Consider the formula $\forall x \Diamond \exists y \Diamond R(x, y)$

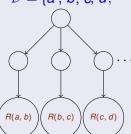
$$\mathcal{D} = \{a, b, c, d, \cdots\}$$



• Consider the formula $\forall x \Diamond \exists y \Diamond R(x, y)$

Const. Domain Model

$$\mathcal{D} = \{a, b, c, d, \cdots\}$$



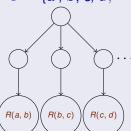
Inc. Domain Model

$$\mathcal{D} = \{a \}$$

• Consider the formula $\forall x \Diamond \exists y \Diamond R(x, y)$

Const. Domain Model

$$\mathcal{D} = \{a, b, c, d, \cdots\}$$



Inc. Domain Model

$$\mathcal{D} = \{a, b\}$$

Syntax

$$\varphi := P(\overline{x}) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \Box \varphi \mid \forall x \Box \varphi \mid \Box \exists x \varphi \mid \Box \forall x \varphi$$

Syntax

$$\varphi := P(\overline{x}) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \Box \varphi \mid \forall x \Box \varphi \mid \Box \exists x \varphi \mid \Box \forall x \varphi$$

Other bundles: □∀, □∃ and the combinations thereof.

Syntax

$$\varphi := P(\overline{x}) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \Box \varphi \mid \forall x \Box \varphi \mid \Box \exists x \varphi \mid \Box \forall x \varphi$$

- Other bundles: $\Box \forall$, $\Box \exists$ and the combinations thereof.
- Eg. $\exists \Box + \Box \exists$ can express $\Diamond \forall x \exists y \Box P(x, y)$

Syntax

$$\varphi := P(\overline{x}) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \Box \varphi \mid \forall x \Box \varphi \mid \Box \exists x \varphi \mid \Box \forall x \varphi$$

- Other bundles: □∀, □∃ and the combinations thereof.
- Eg. $\exists \Box + \Box \exists$ can express $\Diamond \forall x \exists y \Box P(x, y)$
- Can we map the decidability of the combinations of the various bundled fragments?

Decidability of combinations

Liu, P., Ramanujam, Wang, 2023

$A\Box$	30	□∀	===	Over Inc. Domain
✓	1	Х	X	decidable
X	X	1	1	decidable
*	1	1	*	Undecidable
X	1	Х	1	Open (No FMP)
1	1	Х	1	Undecidable
1	X	1	1	decidable

Decidability of combinations

Liu, P., Ramanujam, Wang, 2023

$A\Box$	30	□∀	===	Over Inc. Domain
✓	1	Х	X	decidable
X	X	1	1	decidable
*	1	1	*	Undecidable
X	1	Х	1	Open (No FMP)
1	1	Х	1	Undecidable
1	X	1	1	decidable

• If $\forall x \exists y \Box$ and $\forall x \Box \forall y \Box \forall z \Box$ are expressible then Undecidable

Decidability of combinations

Liu, P., Ramanujam, Wang, 2023

$A\Box$	30	□∀	===	Over Inc. Domain
✓	1	Х	X	decidable
X	X	1	1	decidable
*	1	1	*	Undecidable
X	1	Х	1	Open (No FMP)
1	1	X	1	Undecidable
1	X	1	1	decidable

- If $\forall x \exists y \Box$ and $\forall x \Box \forall y \Box \forall z \Box$ are expressible then Undecidable
- If $\forall x \exists y \Box$ is not expressible then decidable

Liu, P., Ramanujam, Wang, 2023

$A\Box$	30	□∀	===	Over Inc. Domain
/	1	Х	X	decidable
X	X	1	1	decidable
*	1	1	*	Undecidable
X	1	Х	1	Open (No FMP)
1	1	Х	1	Undecidable
1	X	1	1	decidable

- If $\forall x \exists y \Box$ and $\forall x \Box \forall y \Box \forall z \Box$ are expressible then Undecidable
- If $\forall x \exists y \Box$ is not expressible then decidable
- If ∀x∃y□ is expressible but ∀x□∀y□∀z□ are expressible then No FMP, but decidability is open

Does not satisfy Finite Model Property

$$\varphi := \quad \Diamond \forall x \Big[\qquad \exists y \Box \Box Pxy \land \Box \Box \neg Pxx \land \\ \qquad \quad \Diamond \forall y \Big(\left[\Diamond Pxy \leftrightarrow \Box Pxy \right] \land \\ \qquad \quad \quad \Diamond \forall z \big[\big(Pxy \land Pyz \big) \rightarrow \big(Pxz \big) \big] \Big) \Big]$$

Does not satisfy Finite Model Property

Joshi and P., (Arxiv, 2025)

∃□ + □∃ over increasing domain models is decidable

Does not satisfy Finite Model Property

Joshi and P., (Arxiv, 2025)

- ∃□ + □∃ over increasing domain models is decidable
 - Rare extension of FO that is decidable without Finite Model Property

Does not satisfy Finite Model Property

$$\varphi := \Diamond \forall x \Big[\exists y \Box \Box Pxy \land \Box \Box \neg Pxx \land \\ \Diamond \forall y \Big([\Diamond Pxy \leftrightarrow \Box Pxy] \land \\ \Diamond \forall z [(Pxy \land Pyz) \rightarrow (Pxz)] \Big) \Big]$$

Joshi and P., (Arxiv, 2025)

∃□ + □∃ over increasing domain models is decidable

- Rare extension of FO that is decidable without Finite Model Property
- Proof introduces a novel way to maintain skolem witnesses in a pseudo-finite way

Does not satisfy Finite Model Property

$$\varphi := \Diamond \forall x \Big[\exists y \Box \Box Pxy \land \Box \Box \neg Pxx \land \\ \Diamond \forall y \Big(\Big[\Diamond Pxy \leftrightarrow \Box Pxy \Big] \land \\ \Diamond \forall z \Big[\Big(Pxy \land Pyz \Big) \rightarrow \Big(Pxz \Big) \Big] \Big) \Big]$$

Joshi and P., (Arxiv, 2025)

∃□ + □∃ over increasing domain models is decidable

- Rare extension of FO that is decidable without Finite Model Property
- Proof introduces a novel way to maintain skolem witnesses in a pseudo-finite way
- Techniques might be useful to prove other logics on tress that violate finite model property

Conclusion

More on Satisfiability problem

- ■∃ over constant domain models
- Frame restrictions

Conclusion

More on Satisfiability problem

- □∃ over constant domain models
- Frame restrictions

Many more questions

- Interpolation
- Definability
- Finite representations / model checking
- Tools

If you stare at any logic long enough, some decidable fragment will stare back at you!