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Permissiveness?

From discrete controller synthesis, allow more behaviours to be able to react to
uncertainty (unavailability of a transition, e.g.)

In the presence of uncontrollable/antagonistic agents, even more critical!
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Permissiveness in games on graphs

v0

v1 v2

Objective: player ⃝ wants to reach from v0.

⇝ σ⃝ is a winning strategy

If the edge (v1, ) becomes unavailable...

⇝ choosing (v1, v2) is also winning
⇝ allowing permissiveness (multi-strategies)

Is there a most permissive winning multi-strategy w.r.t. to set inclusion?

Not always... but exists for safety games1

In parity games1: there exists a finite-memory permissive winning strategy that
allows all behaviours of memoryless winning strategies, computable in time
O(nd/2+1)

Open(?): find a quasi-polynomial algorithm instead?...

1Bernet, Janin, Walukiewicz, 2002.
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Quantitative comparison of multi-strategies: penalty2

v0

v1 v2

v0

v0v1

v0v1

Penalty = 3

v0

v1 v2

v0

v0v1 v0v2

v0v2v0v1 v0v1v2

v0v1v2

Penalty = 2

2Bouyer, Duflot, Markey, Renault, 2009.
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Penalty-constrained existence of winning multi-strategies

v0

v1 v2 v3

Reachability objective for player ⃝, antagonistic
objective for player □

Strategy for player i : σi : V
∗Vi → V

Ex: (σ⃝, σ□)

⇝ ⟨σ⃝, σ□⟩v0 the outcome.
Ex: ⟨σ⃝, σ□⟩v0 = v0v2v3 .

Multi-strategy for ⃝:
Θ⃝ : V ∗Vi → P(V ) \ {∅}
Θ⃝ winning if all consistent plays are winning

Penalty: maximum (over the consistent plays) of
the penalty along that play...
7 for Θ⃝ because of the play v0v3

Given a game, and m ∈ N, ∃ a winning multi-strategy Θ⃝ with a penalty at most m?

Can be solved in P [ Bouyer, Duflot, Markey, Renault, 2009.]
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1 1 6
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Equilibria in multiplayer reachability games



Multiplayer reachability games

v0

v2v1

v3v4

v5 v6

v7

v8 v9

n players, here only 2: ⃝ and □

An initial vertex: v0

Target set for each player: F⃝ = {v3, v6, v8, v9}
and F□ = {v4, v6}

Infinite outcomes: the play continues even when
one player has reached their objective

In (v0v5v6)
ω, both players win
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Strategies and Nash equilibria

v0

v2v1

v3v4

v5 v6

v7

v8 v9

Strategy: σi : V
∗Vi → V

Ex: (σ⃝, σ□)

Strategy profile: σ = (σ1, . . . , σn)
⇝ ⟨σ⟩v0 the outcome.
Ex: ⟨σ⃝, σ□⟩v0 = v0v5v7v

ω
8 .

Nash equilibrium

A strategy profile σ is a Nash equilibrium (NE) if
no player has an incentive to deviate unilaterally.

Counter-example:

(σ⃝, σ□) is not an NE

In ⟨σ⃝, σ□⟩v0 , only player ⃝ wins

σ□ is a profitable deviation

⟨σ⃝, σ□⟩v0 = (v0v5v6)
ω winning for □
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What is known...

Nash equilibria always exist in reachability games, and even for objectives that are
prefix-independent...3

and finite memory suffices if the corresponding two-player
zero-sum games have optimal finite-memory strategies

Does there exist a NE where a subset of players wins?

Characterization of outcomes ρ of Nash equilibria

There exists a NE σ whose outcome is ρ
if and only if

at every vertex v of the play, belonging to player i , if player i has a
winning strategy from v , then they win in ρ.

P-complete for Büchi and Müller games4; NP-complete for reachability, safety,
co-Büchi, parity and Streett games 5

P-complete for limsup games

NP-complete for quantitative reachability6, supremum, infimum, liminf, mean-payoff

open for discounted games

3Brihaye, De Pril, and Schewe, 2013
4Bruyère, 2017
5Ummels, 2006. Condurache, Filiot, Raskin, 2016.
6Brihaye, Bruyère, Goeminne, Thomasset, 2019
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P-complete for Büchi and Müller games4; NP-complete for reachability, safety,
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Multi-strategies and permissive Nash equilibria



Multi-strategies

v0

v2v1

v3v4

v5 v6

v7

v8 v9

Multi-strategy (for both players):
Θi : V

∗Vi → P(V ) \ {∅}
Ex: (Θ⃝,Θ□)

Multi-strategy profile: Θ = (Θ1, . . . ,Θn)
⇝ ⟨Θ⟩v0 the set of outcomes
Ex: ⟨Θ⃝,Θ□⟩v0 = {v0v1v4vω

3 , v0v2v
ω
3 , v0v5v7v

ω
8 }

v0

v0v1

v0v1v4

v0v1v4v
ω
3

v0v2

v0v2v
ω
3

v0v5

v0v5v7

v0v5v7v
ω
8

can be seen as a tree T
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Permissive Nash equilibria

v0

v2v1

v3v4

v5 v6

v7

v8 v9

a strategy σi is consistent with a multi-strategy
Θi if for all hv ∈ V ∗Vi :

σi (hv) ∈ Θi (hv).

a strategy profile σ = (σ1, . . . , σn) is consistent
with a multi-strategy profile Θ = (Θ1, . . . ,Θn) if
for each 1 ≤ i ≤ n, σi is consistent with Θi .

Permissive Nash equilibrium

A multi-strategy profile Θ is a permissive NE if
each strategy profile σ consistent with Θ is an NE.

Counter-example:

(Θ⃝,Θ□) is not a permissive NE;

because (σ⃝, σ□) is not an NE.
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Penalties

v0

v2v1

v3v4

v5 v6

v7

v8 v9

10

w : E → N a weight function (by default: 1)

v0

v0v1

v0v1v4

v0v1v4v
ω
3

v0v2

v0v2v
ω
3

v0v5

v0v5v7

v0v5v7v
ω
8

0

1

0

0

0

0

11

1

Penalties : (1, 11)
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Studied problems



Constrained penalty problems

Constrained penalty problem

Given (m1, . . . ,mn) ∈ (N ∪ {+∞})n,
does there exist a permissive NE Θ such
that for each 1 ≤ i ≤ n:

Penaltyi (Θ) ≤ mi .

v0

Penalty⃝ ≤ m⃝

and

Penalty□ ≤ m□

Strongly winning with constrained penalty problem

Given (m1, . . . ,mn) ∈ (N∪{+∞})n and
a coalition Win,
does there exist a permissive NE Θ such
that for each player i :

Penaltyi (Θ) ≤ mi

and Θ is strongly winning w.r.t. Win.

v0

Penalty⃝ ≤ m⃝

and

Penalty□ ≤ m□

Win = {⃝,□}
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Constrained penalty problems

Weakly winning with constrained penalty problem

Given (m1, . . . ,mn) ∈ (N∪{+∞})n and
a coalition Win,
does there exist a permissive NE Θ such
that for each player i :

Penaltyi (Θ) ≤ mi

and Θ is weakly winning w.r.t. Win.

v0

Penalty⃝ ≤ m⃝

and

Penalty□ ≤ m□

Win = {⃝,□}

Theorem: If m1, . . . ,mn are encoded in unary,
the constrained penalty problems belong to PSPACE.
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How to solve these problems?



Key idea

Characterization of Outcomes of permissive Nash equilibria

Let T be an infinite tree,

there exists a permissive NE (Θ1, . . . ,Θn) such that
⟨Θ1, . . . ,Θn⟩v0 = T

if and only if
T is a good tree.

⇝ Does there exist a tree T such that

each ρ ∈ T and each player i , Penaltyi (ρ) ≤ mi ;

T satisfies the property of being strongly/weakly winning;

T is a good tree.
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Characterization of outcomes of permissive Nash equilibria
Good tree

No internal deviations

v0

v ∈ Viv

player i is winning
everywhere/nowhere

Intuition

v0

v ∈ Vi

u’u

losewin
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Characterization of outcomes of permissive Nash equilibria
Internal deviation

v0

v2v1

v3v4

v5 v6

v7

v8 v9

10

(Θ⃝,Θ□) is not a permissive NE.

v0

v0v5

v0v5v6v0v5v7

v0v5v7v
ω
8

. . .

□ loses □ wins

T cannot be the outcome of a permissive NE.
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Characterization of outcomes of permissive Nash equilibria
Good tree

No external deviations

v0

v ∈ Vi

u

∈ Fi

v

player i wins

Intuition

v0

v ∈ Vi

u

u′

lose win

∈ Fi
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Characterization of outcomes of permissive Nash equilibria
External deviation

v0

v2v1

v3v4

v5 v6

v7

v8 v9

10

(Θ⃝,Θ□) is not a permissive NE.

v0

v0v1

v0v1v4

v0v1v4v
ω
3

v0v2

v0v2v
ω
3

v0v5

v0v5v7

v0v5v7v
ω
8

□ loses

v6

the tree cannot be the outcome of a permissive
NE
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Deciding the constrained penalty problems

Finite symbolic tree

If there exists a tree T that
satisfies the constraints given by the problem;

is good;
then there exists a tree T ′ that

also satisfies the constraints and is good;

has a finite representation where leaves are sent back to
ancesters, and the finite tree has polynomial height.

core

expanded core⋯

⋯ completion of branches

core: finite subtree of T where all players of
Win have won (finite by König’s lemma)

expanded core: continue to expand the tree
so that we create no internal deviations
(new players must win...)

continue to complete the branches

finally, compress the core and expanded core

This finite symbolic tree and the characterization of the outcomes of permissive NEs
⇝ APTIME algorithm if thresholds are encoded in unary.

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 23



Deciding the constrained penalty problems

Finite symbolic tree

If there exists a tree T that
satisfies the constraints given by the problem;

is good;
then there exists a tree T ′ that

also satisfies the constraints and is good;

has a finite representation where leaves are sent back to
ancesters, and the finite tree has polynomial height.

core

expanded core⋯

⋯ completion of branches

core: finite subtree of T where all players of
Win have won (finite by König’s lemma)

expanded core: continue to expand the tree
so that we create no internal deviations
(new players must win...)

continue to complete the branches

finally, compress the core and expanded core

This finite symbolic tree and the characterization of the outcomes of permissive NEs
⇝ APTIME algorithm if thresholds are encoded in unary.

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 23



Deciding the constrained penalty problems

Finite symbolic tree

If there exists a tree T that
satisfies the constraints given by the problem;

is good;
then there exists a tree T ′ that

also satisfies the constraints and is good;

has a finite representation where leaves are sent back to
ancesters, and the finite tree has polynomial height.

core

expanded core⋯

⋯ completion of branches

core: finite subtree of T where all players of
Win have won (finite by König’s lemma)

expanded core: continue to expand the tree
so that we create no internal deviations
(new players must win...)

continue to complete the branches

finally, compress the core and expanded core

This finite symbolic tree and the characterization of the outcomes of permissive NEs
⇝ APTIME algorithm if thresholds are encoded in unary.

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 23



Deciding the constrained penalty problems

Finite symbolic tree

If there exists a tree T that
satisfies the constraints given by the problem;

is good;
then there exists a tree T ′ that

also satisfies the constraints and is good;

has a finite representation where leaves are sent back to
ancesters, and the finite tree has polynomial height.

core

expanded core⋯

⋯ completion of branches

core: finite subtree of T where all players of
Win have won (finite by König’s lemma)

expanded core: continue to expand the tree
so that we create no internal deviations
(new players must win...)

continue to complete the branches until all
successor of a node are of a similar type
(taken from a finite set) to some ancestors:
these completions have polynomial length

finally, compress the core and expanded core

This finite symbolic tree and the characterization of the outcomes of permissive NEs
⇝ APTIME algorithm if thresholds are encoded in unary.

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 23



Deciding the constrained penalty problems

Finite symbolic tree

If there exists a tree T that
satisfies the constraints given by the problem;

is good;
then there exists a tree T ′ that

also satisfies the constraints and is good;

has a finite representation where leaves are sent back to
ancesters, and the finite tree has polynomial height.

core

expanded core⋯

⋯ completion of branches

core: finite subtree of T where all players of
Win have won (finite by König’s lemma)

expanded core: continue to expand the tree
so that we create no internal deviations
(new players must win...)

continue to complete the branches

finally, compress the core and expanded core
(by copy-pasting the subtrees) to make their
height polynomial

This finite symbolic tree and the characterization of the outcomes of permissive NEs
⇝ APTIME algorithm if thresholds are encoded in unary.

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 23



Deciding the constrained penalty problems

Finite symbolic tree

If there exists a tree T that
satisfies the constraints given by the problem;

is good;
then there exists a tree T ′ that

also satisfies the constraints and is good;

has a finite representation where leaves are sent back to
ancesters, and the finite tree has polynomial height.

core

expanded core⋯

⋯ completion of branches

core: finite subtree of T where all players of
Win have won (finite by König’s lemma)

expanded core: continue to expand the tree
so that we create no internal deviations
(new players must win...)

continue to complete the branches

finally, compress the core and expanded core

This finite symbolic tree and the characterization of the outcomes of permissive NEs
⇝ APTIME algorithm if thresholds are encoded in unary.

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 23



Generalisation to subgame perfect equilibria



Subgame perfect equilibria: avoid non-credible threats

v0

v2v1

v3v4

v5 v6

v7

v8 v9

Nash equilibrium, but player □ plays a
non-credible threat in v5: going to v6 is
profitable for them...

Subgame perfect equilibrium

A strategy profile σ is a subgame perfect equi-
librium (SPE) if it is a Nash equilibrium in all
subgames (from all possible histories from v0).

Permissive SPE

A multi-strategy profile Θ is a permissive SPE
if each strategy profile σ consistent with Θ is an
SPE.

The other edges from v5 are disallowed in any
permissive SPE: more robustness!

Two notions of penalty: the main penalty as
before, and the retaliation penalty considering all
other subgames
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What is known...

SPE always exist in reachability games7, and other qualitative objectives like Borel
objectives8 and quantitative reachability games9.

Does there exist an SPE where a subset of players wins?

Characterization of outcomes of SPEs
...

NP-complete for parity games and mean-payoff games10

PSPACE-complete for reachability and safety11, and for quantitative reachability
games12

7Brihaye, Bruyère, De Pril, Gimbert, 2012
8Grädel, Ummels, 2008.
9De Pril, 2013.

10Brice, Raskin, van den Bogaard, 2022.
11Brihaye, Bruyère, Goeminne, Raskin, 2018.
12Brihaye, Bruyère, Goeminne, Raskin, van den Bogaard, 2019
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objectives8 and quantitative reachability games9.

Does there exist an SPE where a subset of players wins?

Characterization of outcomes of SPEs
...

NP-complete for parity games and mean-payoff games10

PSPACE-complete for reachability and safety11, and for quantitative reachability
games12

7Brihaye, Bruyère, De Pril, Gimbert, 2012
8Grädel, Ummels, 2008.
9De Pril, 2013.

10Brice, Raskin, van den Bogaard, 2022.
11Brihaye, Bruyère, Goeminne, Raskin, 2018.
12Brihaye, Bruyère, Goeminne, Raskin, van den Bogaard, 2019
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Constrained penalty problems

Constrained penalty problem

Given (m1, . . . ,mn) ∈ (N ∪ {+∞})n and (r1, . . . , rn) ∈ (N ∪ {+∞})n,
does there exist a permissive SPE Θ such that for each player i :

Penaltyi (Θ) ≤ mi and Retaliate-penaltyi (Θ) ≤ ri

Strongly/weakly winning with constrained penalty problem

Given (m1, . . . ,mn) ∈ (N ∪ {+∞})n and a coalition Win,
does there exist a permissive SPE Θ such that for each player i :

Penaltyi (Θ) ≤ mi and Retaliate-penaltyi (Θ) ≤ ri

and Θ is strongly/weakly winning w.r.t. Win.
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Constrained penalty problems

Theorem: The constrained penalty problems for SPEs belong to
PSPACE if penalty upperbounds are encoded in unary.

Characterization of outcomes of permissive SPEs

Let T be an infinite tree,

there exists a permissive SPE (Θ1, . . . ,Θn) such that
⟨Θ1, . . . ,Θn⟩v0 = T

if and only if
there is a good forest (indexed by initial history) that has T has tree

from v0.

The rule over external deviations in good trees is now replaced by the absence of
deviations in-between the trees of the forest...

Still able to find a compact representation of good forests, and thus a PSPACE
algorithm

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 28



Constrained penalty problems

Theorem: The constrained penalty problems for SPEs belong to
PSPACE if penalty upperbounds are encoded in unary.

Characterization of outcomes of permissive SPEs

Let T be an infinite tree,

there exists a permissive SPE (Θ1, . . . ,Θn) such that
⟨Θ1, . . . ,Θn⟩v0 = T

if and only if
there is a good forest (indexed by initial history) that has T has tree

from v0.

The rule over external deviations in good trees is now replaced by the absence of
deviations in-between the trees of the forest...

Still able to find a compact representation of good forests, and thus a PSPACE
algorithm

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 28



Constrained penalty problems

Theorem: The constrained penalty problems for SPEs belong to
PSPACE if penalty upperbounds are encoded in unary.

Characterization of outcomes of permissive SPEs

Let T be an infinite tree,

there exists a permissive SPE (Θ1, . . . ,Θn) such that
⟨Θ1, . . . ,Θn⟩v0 = T

if and only if
there is a good forest (indexed by initial history) that has T has tree

from v0.

The rule over external deviations in good trees is now replaced by the absence of
deviations in-between the trees of the forest...

Still able to find a compact representation of good forests, and thus a PSPACE
algorithm

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 28



Constrained penalty problems

Theorem: The constrained penalty problems for SPEs belong to
PSPACE if penalty upperbounds are encoded in unary.

Characterization of outcomes of permissive SPEs

Let T be an infinite tree,

there exists a permissive SPE (Θ1, . . . ,Θn) such that
⟨Θ1, . . . ,Θn⟩v0 = T

if and only if
there is a good forest (indexed by initial history) that has T has tree

from v0.

The rule over external deviations in good trees is now replaced by the absence of
deviations in-between the trees of the forest...

Still able to find a compact representation of good forests, and thus a PSPACE
algorithm

Benjamin Monmege Permissive Equilibria in Multiplayer Reachability Games 28



Conclusion

permissiveness in multiplayer reachability games ⇝ permissive equilibria (Nash
equilibria, subgame perfect equilibria)

penalties to compare multi-strategies (main penalties, retaliation penalties)

decision problems related to the existence of permissive equilibria with constraints on
the penalties

relevant permissive equilibria
⇝ strongly/weakly winning with constrained penalty problems

those problems belong to PSPACE if the thresholds are encoded in unary
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Perspectives

decrease the space dependency to be only polynomial in the logarithm of the penalty
thresholds? or matching lower bound on complexity?

extension to more general ω-regular objectives and weighted games

other definitions of penalties: discounted, mean-payoff...

extensions in the time setting: already preliminary works13 showing that the problem
is difficult... but more tricky definition of penalties... what if we stick to simpler
penalties, to extend the study to equilibria?

13Bouyer, Fang, Markey, 2015. Clement, Jéron, Markey, Mentré, 2020.
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