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Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.
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Given a big supply of coins in denominations a1,...,a; € N,
what is the largest amount [ that cannot be generated?
Does such an f exist?

O(f): Vn (nngElfclElxg...Elxk (n:al-m1+-~-+ak-xk))

Now ®(f) A =®(f — 1) expresses the property in question.
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Three views: three types of decision procedures

. Symbolic computation
View Geometry Automata theory ymbor nputat
(quantifier elimination)
Repr. | Semi-linear sets | Finite automata Logical formulas
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1. Three views on linear integer arithmetic (LIA)

— from geometry: Semi-linear sets
— from automata theory: k-automatic sets
— from symbolic computation: Quantifier elimination

2. Integer programming in NP by quantifier elimination

— Gaussian elimination
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View from geometry: Semi-linear sets
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Periodic and ultimately periodic sets of natural numbers

Suppose S C N.

S is periodic if there exists a p > 0 such that,
forallzeN: zeSiffr+pes.

S is ultimately periodic if there exist N and p > 0 such that,
forallz > N: zeSiffz+pes.

Ultimately periodic = finite union of arithmetic progressions.
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Ultimately periodic sets in higher dimension
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Linear and semi-linear sets

[Parikh (1961)]
Vector b, set of vectors P = {p1,...,ps}

Linear set (integer cone): |P| < o0

L(b,P)={b+ A \ip1+ ...+ Asps:
)\1,...,)\36N}
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Linear and semi-linear sets

[Parikh (1961)]
Vector b, set of vectors P = {p1,...,ps}

Linear set (integer cone): |P| < o0

L(b,P) = {b+\p1 + ...+ \sps:
)\1,...,)\5€N}

Semi-linear set: 1], |P;] < oo

M = L, P)
el
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Theorem 1 (Ginsburg and Spanier, 1964).
Semi-linear sets = sets definable in Presburger arithmetic.

Seymour Ginsburg Edwin H. Spanier
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Theorem 1 (Ginsburg and Spanier, 1964).
Semi-linear sets = sets definable in Presburger arithmetic.

Seymour Ginsburg Edwin H. Spanier

Corollary (Presburger, 1929): Presburger arithmetic is decidable.
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More from the geometric view:
= generating functions [Barvinok 1994]

= syntactic sugar: Presburger with star
[Piskac and Kuncak 2008] [Haase and Zetzsche 2019]

= nonlinear generalisations: almost semilinear sets
[Leroux 2011] [Esparza, Guttenberg, Raskin 2023]
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View from automata theory: k-automatic sets
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triplets of digits and check the
equality x +y = z:
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Finite automaton can read
triplets of digits and check the
equality x +y = z:

Ty 54 321
98765
z: 153086
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Ford > 1, aset S C N? is 2-automatic (or: 2-recognizable)
if there is a deterministic finite automaton (DFA) that accepts
the language

{(wn,...,wq) € ({0,1}d)* : for some (nq,...,ng4) € S,

each wj is a binary expansion of n;}.

Theorem 2 (Biichi 1960 + Bruyere 1985, corollary).

1. Every set definable in Presburger arithmetic is (effectively)
2-automatic.

2. There exists a 2-automatic set S C N that is not definable
in Presburger arithmetic.
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Theorems about Sturmian Words

We can use Pecan to prove many interesting properties of Sturmian words: one funda-
mental result is that Sturmian words are not eventually periodic.

Definition. A word is eventually periodic if it is of the form abbbbb . .. for some sub-
words a and b (e.g., 0.1024545454545 . . . where the repeating part is 45).

Theorem. Sturmian words are not eventually periodic.

Proof. In Pecan, prove the statement by writing the definition of “eventually periodic”
and stating the theorem. Running the Pecan program below proves the theorem.

eventually_periodic(a, p) :=
p>0A3n. Vi. if i > n then C[i] = C[i+p]

Theorem ("Sturmian words are not eventually periodic", {
Va,p. if p > 0 then —eventually periodic(a,p)
b

We omit the pictures of the intermediate automata, as they have hundreds (or even
thousands) of states, and so it is nearly impossible to understand them by looking at
pictures of them. O

In this example, we state and prove a theorem about all Sturmian words.

« Previous theorem provers (e.g., Walnut [2]) in the same area could only prove theo-
rems about a single Sturmian word, or small subsets of Sturmian words.

Using Pecan, we proved many other theorems about Sturmian words, including many
O classical results, some recent results, and notably, some new results.

[Lin, Ma, Oei, Teng, Vuksanovic,
Schulz, Tursi, Hieronymi]
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More from the automata-theoretic view:

= links with numeration systems
[Michaux, Point, Rigo, Villemaire]

= automatic structures [Hodgson 1976]
[Khoussainov, Nerode 1995] [Blumensath, Gradel 2000] etc.

21/36



View from symbolic computation: Quantifier elimination
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Example (not in Presburger arithmetic):

JreR: 22 +pr+qg=0
s pP—4¢>=0
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Quantifier elimination for Presburger arithmetic

Example:

Jy. [z +2+3< Yy A(y<br—11)] < 2z +2z+3<6x—11
<

Jy. [z +2+3<2y) A2y <6z —11)] +
2r4+2z+3<6x—11)A(6z—11=0 mod2)V
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Quantifier elimination for Presburger arithmetic

Example:
Jy. [z +2+3< Yy A(y<br—11)] < 2z +2z+3<6x—11
Jy. [z +2+3<2y) A2y <6z —11)] +

2z +2+3
(2x+z+3

NN

6x —11) A (6 —11=0 mod 2)V
6x —12) A (6z —11 =1 mod 2)

Theorem 3 (Presburger 1929).
There exists an algorithm that,
given a quantifier-free formula ¢ and variable z,

outputs a quantifier-free formula ¢’ such that (3z ¢) < ¢'.
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More from the symbolic computation view:
= nonlinear extensions [Semenov 1980, 1984]

= counting quantifiers 37Yz ¢ [Schweikardt 2005]
[Habermehl, Kuske 2015, 2023] [Ch., Haase, Mansutti 2022]

= parametric Presburger arithmetic
[Bogart, Goodrick, Woods 2017]
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Theorem (Oppen 1973).
There is an algorithm that solves the decision problem for
Presburger arithmetic in triply exponential time.

In fact, all three views provide 3-exp decision procedures.
[Klaedtke 2008, Durand-Gasselin and Habermehl 2010, 2012]
[Ch., Haase, Mansutti 2022]
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[Klaedtke 2008, Durand-Gasselin and Habermehl 2010, 2012]
[Ch., Haase, Mansutti 2022]

» Deciding Presburger arithmetic requires nondet. 2-exp time
[Fischer and Rabin, 1974]

nO)
» ...and is complete for STA(x, 22 , M) [Berman, 1980]
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Theorem (Borosh, Treybig 1976,
von zur Gathen, Sieveking 1978, Papadimitriou 1981).

Integer programming is NP-complete.

Corollary (Oppen 1978).

Existential Presburger arithmetic is NP-complete.

Actually: membership in NP via each of three views.
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1. Three views on linear integer arithmetic (LIA)

— from geometry: Semi-linear sets
— from automata theory: k-automatic sets
— from symbolic computation: Quantifier elimination

2. Integer programming in NP by quantifier elimination

— Gaussian elimination
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Why use quantifier elimination for integer programming?

Theorem (just seen).
Integer linear programming is in NP.

This talk: show this by quantifier elimination.
(Prior QE procedures produce 2-exp big formulas on ILP.)

Theorem (Ch., Mansutti, Starchak 2024).

Integer linear-exponential programming is in NP.

(That is: additionally handling y = 2% and y = (z mod 2%).)
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Integer linear programming in NP by quantifier elimination

o(x,y) : system of linear equalities

foreach z in x do
if no equality contains = then continue

a-x+ 7 =0 (with a # 0) + an arbitrary equality that contains x

multiply all constraints in ¢ by a and replace z by —7/a
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Integer linear programming in NP by quantifier elimination

o(x,y) : system of linear equalities

{+1;

foreach = in = do /* growth of coefficients is now polynomial */
if no equality contains = then continue
a-x+ 7 =0 (with a # 0) < an arbitrary equality that contains x
p+4tl;, L+ a
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o(x,y) : system of linear equalities
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Integer linear programming in NP by quantifier elimination

o(x,y) : system of linear equalities and inequalities

replace each 7 < 0 with 7+ 2z = 0, where z € N is a slack variable

0+ 1;

foreach z in  do /* with inequalities... */
if no equality contains = then continue
a-x+ 7 =0 (with a # 0) + an arbitrary equality that contains x
p+4t;, L+a

multiply all constraints in ¢ by a and replace z by —7/a
divide each constraint in ¢ by p

ppoA(a|T)
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Integer linear programming in NP by quantifier elimination

o(x,y) : system of linear equalities and inequalities

replace each 7 < 0 with 7+ 2z = 0, where z € N is a slack variable
L+1; s+ ()
foreach z in x do /*... and shifts */
if no equality contains = then continue
a-x+7 =0 (with a # 0) < guess an equality that contains z
p+4tl;, L+a
if 7 contains a slack variable z not assigned by s then
v 4 guess an integer in [0, |a| - mod(y) — 1]
append pair (v, z) to s /* substitution */
multiply all constraints in ¢ by a and replace z by —7/a
divide each constraint in ¢ by p
ppN(alT)
apply substitutions of s
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[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
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The magic of division by p (previous pivot)

ar +by+t' =0
cx+dy+t"=0
(ad —be)y + (at” —ct’) =0

a b

The new coefficient is |¢c d

— the bit size of numbers doubles.

In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester's determinant identity / Desnanot—Jacobi identity 1851)
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ail

a1 a2 |G21 @23
= a11-|G21
ailr aiz2| |ai1 ai3 asy

azr asz| |asir asg

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925.
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Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given p: A-x 4+ B -y < ¢, each non-deterministic branch 3
outputs ¢g: Fg -y < gg such that (3x ) & \/ ¢3.
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— IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]
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Summary

1. Three views on linear integer arithmetic (LIA)

— from geometry: Semi-linear sets
— from automata theory: k-automatic sets
— from symbolic computation: Quantifier elimination

2. Integer programming in NP by quantifier elimination

— Gaussian elimination
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Further directions

» Computational complexity of extensions
(e.g.: counting quantifiers 3%Yx ; 3 divisibility = | y)

» Decidability of nonlinear extensions
(e.g., 3 with several power predicates)

» Applications; computational complexity in special cases
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» Computational complexity of extensions
(e.g.: counting quantifiers 3%Yx ; 3 divisibility = | y)

» Decidability of nonlinear extensions
(e.g., 3 with several power predicates)

» Applications; computational complexity in special cases

Thank you!

https://warwick.ac.uk/chdir
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