
Linear integer arithmetic
and Gaussian elimination

Dmitry Chistikov

University of Warwick, United Kingdom

CAALM 2025

06 June 2025

Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1))

It is a language in which we can:

I talk about natural numbers (referred to as variables x, y, . . .)

I assert linear inequalities involving these numbers

I form Boolean combinations (∧, ∨, ¬) of assertions

I quantify over (all) natural numbers (∃, ∀)

2/36

Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1))

It is a language in which we can:

I talk about natural numbers (referred to as variables x, y, . . .)

I assert linear inequalities involving these numbers

I form Boolean combinations (∧, ∨, ¬) of assertions

I quantify over (all) natural numbers (∃, ∀)

2/36

Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1))

It is a language in which we can:

I talk about natural numbers (referred to as variables x, y, . . .)

I assert linear inequalities involving these numbers

I form Boolean combinations (∧, ∨, ¬) of assertions

I quantify over (all) natural numbers (∃, ∀)

2/36

Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1))

It is a language in which we can:

I talk about natural numbers (referred to as variables x, y, . . .)

I assert linear inequalities involving these numbers

I form Boolean combinations (∧, ∨, ¬) of assertions

I quantify over (all) natural numbers (∃, ∀)

2/36

Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1))

It is a language in which we can:

I talk about natural numbers (referred to as variables x, y, . . .)

I assert linear inequalities involving these numbers

I form Boolean combinations (∧, ∨, ¬) of assertions

I quantify over (all) natural numbers (∃, ∀)

2/36

Linear Integer Arithmetic (Presburger arithmetic):

∃y

(x 6 3y) ∧ (2y 6 x) ∧ (y 6 2)

(x < 0) ∨ (y < 0)

{0, 2, 3, 4, 5, 6}

3/36

Linear Integer Arithmetic (Presburger arithmetic):

∃y (x 6 3y) ∧ (2y 6 x) ∧ (y 6 2)

(x < 0) ∨ (y < 0)

{0, 2, 3, 4, 5, 6}

3/36

Linear Integer Arithmetic (Presburger arithmetic):

∃y (x 6 3y) ∧ (2y 6 x) ∧ (y 6 2) (x < 0) ∨ (y < 0)

{0, 2, 3, 4, 5, 6}

3/36

Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1))

It is a language in which we can:

I talk about natural numbers (referred to as variables x, y, . . .)

I assert linear inequalities involving these numbers

I form Boolean combinations (∧, ∨, ¬) of assertions

I quantify over (all) natural numbers (∃, ∀)

4/36

Linear Integer Arithmetic (Presburger arithmetic):

the first-order theory of natural numbers with addition and order.

Mojżesz Presburger

5/36

The Frobenius coin problem

Given a big supply of coins in denominations a1, . . . , ak ∈ N,
what is the largest amount f that cannot be generated?
Does such an f exist?

Φ(f) : ∀n
(
n 6 f ∨ ∃x1 ∃x2 . . . ∃xk (n = a1 · x1 + · · ·+ ak · xk)

)
Now Φ(f) ∧ ¬Φ(f − 1) expresses the property in question.

6/36

The Frobenius coin problem

Given a big supply of coins in denominations a1, . . . , ak ∈ N,
what is the largest amount f that cannot be generated?
Does such an f exist?

Φ(f) : ∀n
(
n 6 f ∨ ∃x1 ∃x2 . . . ∃xk

(n = a1 · x1 + · · ·+ ak · xk)

)
Now Φ(f) ∧ ¬Φ(f − 1) expresses the property in question.

6/36

The Frobenius coin problem

Given a big supply of coins in denominations a1, . . . , ak ∈ N,
what is the largest amount f that cannot be generated?
Does such an f exist?

Φ(f) : ∀n
(
n 6 f ∨

∃x1 ∃x2 . . . ∃xk (n = a1 · x1 + · · ·+ ak · xk)

)
Now Φ(f) ∧ ¬Φ(f − 1) expresses the property in question.

6/36

The Frobenius coin problem

Given a big supply of coins in denominations a1, . . . , ak ∈ N,
what is the largest amount f that cannot be generated?
Does such an f exist?

Φ(f) :

∀n
(
n 6 f ∨ ∃x1 ∃x2 . . . ∃xk (n = a1 · x1 + · · ·+ ak · xk)

)
Now Φ(f) ∧ ¬Φ(f − 1) expresses the property in question.

6/36

The Frobenius coin problem

Given a big supply of coins in denominations a1, . . . , ak ∈ N,
what is the largest amount f that cannot be generated?
Does such an f exist?

Φ(f) : ∀n
(
n 6 f ∨ ∃x1 ∃x2 . . . ∃xk (n = a1 · x1 + · · ·+ ak · xk)

)

Now Φ(f) ∧ ¬Φ(f − 1) expresses the property in question.

6/36

The Frobenius coin problem

Given a big supply of coins in denominations a1, . . . , ak ∈ N,
what is the largest amount f that cannot be generated?
Does such an f exist?

Φ(f) : ∀n
(
n 6 f ∨ ∃x1 ∃x2 . . . ∃xk (n = a1 · x1 + · · ·+ ak · xk)

)
Now Φ(f) ∧ ¬Φ(f − 1) expresses the property in question.

6/36

Decision problem for Presburger arithmetic

Input: sentence ϕ in Presburger arithmetic
Output: is ϕ true or false?

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1)) (in P.a.)

∀s1 ∀s2 ∃x1 ∃x2 s1 + ax1 = s2 + bx2 (in P.a. for fixed a, b ∈ N)

∀x ∃y ((y > x) ∧ P (y) ∧ P (y + 2)) (not in P.a.)

∀x ∀y [(y | x) ∧ (y | x+ 1)]→ y 6 1 (not in P.a.)

7/36

Decision problem for Presburger arithmetic

Input: sentence ϕ in Presburger arithmetic
Output: is ϕ true or false?

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1)) (in P.a.)

∀s1 ∀s2 ∃x1 ∃x2 s1 + ax1 = s2 + bx2 (in P.a. for fixed a, b ∈ N)

∀x ∃y ((y > x) ∧ P (y) ∧ P (y + 2)) (not in P.a.)

∀x ∀y [(y | x) ∧ (y | x+ 1)]→ y 6 1 (not in P.a.)

7/36

Decision problem for Presburger arithmetic

Input: sentence ϕ in Presburger arithmetic
Output: is ϕ true or false?

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1)) (in P.a.)

∀s1 ∀s2 ∃x1 ∃x2 s1 + ax1 = s2 + bx2 (in P.a. for fixed a, b ∈ N)

∀x ∃y ((y > x) ∧ P (y) ∧ P (y + 2)) (not in P.a.)

∀x ∀y [(y | x) ∧ (y | x+ 1)]→ y 6 1 (not in P.a.)

7/36

Decision problem for Presburger arithmetic

Input: sentence ϕ in Presburger arithmetic
Output: is ϕ true or false?

∀x ∃y ∃z ((x = 2y) ∨ (x = 2z + 1)) (in P.a.)

∀s1 ∀s2 ∃x1 ∃x2 s1 + ax1 = s2 + bx2 (in P.a. for fixed a, b ∈ N)

∀x ∃y ((y > x) ∧ P (y) ∧ P (y + 2)) (not in P.a.)

∀x ∀y [(y | x) ∧ (y | x+ 1)]→ y 6 1 (not in P.a.)

7/36

Decision problems are solved by
decision procedures, implemented
in satisfiability modulo theories
(SMT) solvers.

I Common framework/toolbox
for problems from various
domains

I Growing software support

Redlog

8/36

Decision problems are solved by
decision procedures, implemented
in satisfiability modulo theories
(SMT) solvers.

I Common framework/toolbox
for problems from various
domains

I Growing software support

Redlog

8/36

Decision problems are solved by
decision procedures, implemented
in satisfiability modulo theories
(SMT) solvers.

I Common framework/toolbox
for problems from various
domains

I Growing software support

Redlog

8/36

Three views: three types of decision procedures

View Geometry Automata theory
Symbolic computation
(quantifier elimination)

Repr. Semi-linear sets Finite automata Logical formulas

9/36

1. Three views on linear integer arithmetic (LIA)

— from geometry: Semi-linear sets
— from automata theory: k-automatic sets
— from symbolic computation: Quantifier elimination

2. Integer programming in NP by quantifier elimination

— Gaussian elimination

10/36

View from geometry: Semi-linear sets

11/36

Periodic and ultimately periodic sets of natural numbers

Suppose S ⊆ N.

S is periodic if there exists a p > 0 such that,
for all x ∈ N: x ∈ S iff x+ p ∈ S.

0 2 4 61 3 5 7

S is ultimately periodic if there exist N and p > 0 such that,
for all x > N : x ∈ S iff x+ p ∈ S.

0 1 2 4 63 5 7

Ultimately periodic = finite union of arithmetic progressions.

12/36

Periodic and ultimately periodic sets of natural numbers

Suppose S ⊆ N.

S is periodic if there exists a p > 0 such that,
for all x ∈ N: x ∈ S iff x+ p ∈ S.

0 2 4 61 3 5 7

S is ultimately periodic if there exist N and p > 0 such that,
for all x > N : x ∈ S iff x+ p ∈ S.

0 1 2 4 63 5 7

Ultimately periodic = finite union of arithmetic progressions.

12/36

Periodic and ultimately periodic sets of natural numbers

Suppose S ⊆ N.

S is periodic if there exists a p > 0 such that,
for all x ∈ N: x ∈ S iff x+ p ∈ S.

0 2 4 61 3 5 7

S is ultimately periodic if there exist N and p > 0 such that,
for all x > N : x ∈ S iff x+ p ∈ S.

0 1 2 4 63 5 7

Ultimately periodic = finite union of arithmetic progressions.

12/36

Ultimately periodic sets in higher dimension

13/36

Linear and semi-linear sets
[Parikh (1961)]

Vector b, set of vectors P = {p1, . . . ,ps}

Linear set (integer cone): |P | <∞

L(b, P) = {b + λ1p1 + . . .+ λsps :

λ1, . . . , λs ∈ N}

Rohit J. Parikh
Photo credit: Andrej Bauer, www.andrej.com / CC-BY-SA 2.5 SI 14/36

Linear and semi-linear sets
[Parikh (1961)]

Vector b, set of vectors P = {p1, . . . ,ps}

Linear set (integer cone): |P | <∞

L(b, P) = {b + λ1p1 + . . .+ λsps :

λ1, . . . , λs ∈ N}

b

p1

p2

14/36

Linear and semi-linear sets
[Parikh (1961)]

Vector b, set of vectors P = {p1, . . . ,ps}

Linear set (integer cone): |P | <∞

L(b, P) = {b + λ1p1 + . . .+ λsps :

λ1, . . . , λs ∈ N}

Semi-linear set: |I|, |Pi| <∞
M =

⋃
i∈I

L(bi, Pi)

14/36

Theorem 1 (Ginsburg and Spanier, 1964).
Semi-linear sets = sets definable in Presburger arithmetic.

Seymour Ginsburg
Edwin H. Spanier

Corollary (Presburger, 1929): Presburger arithmetic is decidable.

Left: ACM SIGMOD Record, 34(1), 03/2005. Right: Mathematisches Forschungsinstitut Oberwolfach gGmbH / CC-BY-SA 2.0 DE.15/36

Theorem 1 (Ginsburg and Spanier, 1964).
Semi-linear sets = sets definable in Presburger arithmetic.

Seymour Ginsburg
Edwin H. Spanier

Corollary (Presburger, 1929): Presburger arithmetic is decidable.

Left: ACM SIGMOD Record, 34(1), 03/2005. Right: Mathematisches Forschungsinstitut Oberwolfach gGmbH / CC-BY-SA 2.0 DE.15/36

More from the geometric view:

⇒ generating functions [Barvinok 1994]

⇒ syntactic sugar: Presburger with star
[Piskac and Kuncak 2008] [Haase and Zetzsche 2019]

⇒ nonlinear generalisations: almost semilinear sets
[Leroux 2011] [Esparza, Guttenberg, Raskin 2023]

16/36

View from automata theory: k-automatic sets

17/36

Finite automaton can read
triplets of digits and check the
equality x+ y = z:

x : + 54 321

y : 98 765

z : 153 086

0 1

[
3
7
0

]

[
0
0
1

]

[
1
5
6

]
,

[
2
6
8

] [
4
8
3

]
,

[
5
9
5

]
[1960]

J. Richard Büchi

Image source: http://static.classora.com/files/uploads/images/entries/581092/main.jpg (J.R. Büchi) CC BY-SA 4.0, Wikipedia 18/36

Finite automaton can read
triplets of digits and check the
equality x+ y = z:

x : + 54 321

y : 98 765

z : 153 086

0 1

[
3
7
0

]

[
0
0
1

]

[
1
5
6

]
,

[
2
6
8

] [
4
8
3

]
,

[
5
9
5

]
[1960]

J. Richard Büchi

Image source: http://static.classora.com/files/uploads/images/entries/581092/main.jpg (J.R. Büchi) CC BY-SA 4.0, Wikipedia 18/36

Finite automaton can read
triplets of digits and check the
equality x+ y = z:

x : + 54 321

y : 98 765

z : 153 086

0 1

[
3
7
0

]

[
0
0
1

]

[
1
5
6

]
,

[
2
6
8

] [
4
8
3

]
,

[
5
9
5

]
[1960]

J. Richard Büchi

Image source: http://static.classora.com/files/uploads/images/entries/581092/main.jpg (J.R. Büchi) CC BY-SA 4.0, Wikipedia 18/36

For d > 1, a set S ⊆ Nd is 2-automatic (or: 2-recognizable)
if there is a deterministic finite automaton (DFA) that accepts
the language

{(w1, . . . , wd) ∈
(
{0, 1}d

)∗
: for some (n1, . . . , nd) ∈ S,

each wi is a binary expansion of ni}.

Theorem 2 (Büchi 1960 + Bruyère 1985, corollary).

1. Every set definable in Presburger arithmetic is (effectively)
2-automatic.

2. There exists a 2-automatic set S ⊆ N that is not definable
in Presburger arithmetic.

19/36

[Lin, Ma, Oei, Teng, Vuksanovic,
Schulz, Tursi, Hieronymi]

20/36

[Lin, Ma, Oei, Teng, Vuksanovic,
Schulz, Tursi, Hieronymi]

20/36

More from the automata-theoretic view:

⇒ links with numeration systems
[Michaux, Point, Rigo, Villemaire]

⇒ automatic structures [Hodgson 1976]
[Khoussainov, Nerode 1995] [Blumensath, Grädel 2000] etc.

21/36

View from symbolic computation: Quantifier elimination

22/36

Example (not in Presburger arithmetic):

∃x ∈ R : x2 + px+ q = 0

⇔ p2 − 4q > 0

23/36

Quantifier elimination for Presburger arithmetic

Example:

∃y. [(2x+ z + 3 6 y) ∧ (y 6 6x− 11)] ↔ 2x+ z + 3 6 6x− 11

∃y. [(2x+ z + 3 6 2y) ∧ (2y 6 6x− 11)] ↔

(2x+ z + 3 6 6x− 11) ∧ (6x− 11 ≡ 0 mod 2) ∨
(2x+ z + 3 6 6x− 12) ∧ (6x− 11 ≡ 1 mod 2)

Theorem 3 (Presburger 1929).
There exists an algorithm that,
given a quantifier-free formula ϕ and variable x,
outputs a quantifier-free formula ϕ′ such that (∃x ϕ)⇔ ϕ′.

24/36

Quantifier elimination for Presburger arithmetic

Example:

∃y. [(2x+ z + 3 6 y) ∧ (y 6 6x− 11)] ↔ 2x+ z + 3 6 6x− 11

∃y. [(2x+ z + 3 6 2y) ∧ (2y 6 6x− 11)] ↔

(2x+ z + 3 6 6x− 11) ∧ (6x− 11 ≡ 0 mod 2) ∨
(2x+ z + 3 6 6x− 12) ∧ (6x− 11 ≡ 1 mod 2)

Theorem 3 (Presburger 1929).
There exists an algorithm that,
given a quantifier-free formula ϕ and variable x,
outputs a quantifier-free formula ϕ′ such that (∃x ϕ)⇔ ϕ′.

24/36

Quantifier elimination for Presburger arithmetic

Example:

∃y. [(2x+ z + 3 6 y) ∧ (y 6 6x− 11)] ↔ 2x+ z + 3 6 6x− 11

∃y. [(2x+ z + 3 6 2y) ∧ (2y 6 6x− 11)] ↔

(2x+ z + 3 6 6x− 11) ∧ (6x− 11 ≡ 0 mod 2) ∨
(2x+ z + 3 6 6x− 12) ∧ (6x− 11 ≡ 1 mod 2)

Theorem 3 (Presburger 1929).
There exists an algorithm that,
given a quantifier-free formula ϕ and variable x,
outputs a quantifier-free formula ϕ′ such that (∃x ϕ)⇔ ϕ′.

24/36

Quantifier elimination for Presburger arithmetic

Example:

∃y. [(2x+ z + 3 6 y) ∧ (y 6 6x− 11)] ↔ 2x+ z + 3 6 6x− 11

∃y. [(2x+ z + 3 6 2y) ∧ (2y 6 6x− 11)] ↔

(2x+ z + 3 6 6x− 11) ∧ (6x− 11 ≡ 0 mod 2) ∨
(2x+ z + 3 6 6x− 12) ∧ (6x− 11 ≡ 1 mod 2)

Theorem 3 (Presburger 1929).
There exists an algorithm that,
given a quantifier-free formula ϕ and variable x,
outputs a quantifier-free formula ϕ′ such that (∃x ϕ)⇔ ϕ′.

24/36

Quantifier elimination for Presburger arithmetic

Example:

∃y. [(2x+ z + 3 6 y) ∧ (y 6 6x− 11)] ↔ 2x+ z + 3 6 6x− 11

∃y. [(2x+ z + 3 6 2y) ∧ (2y 6 6x− 11)] ↔

(2x+ z + 3 6 6x− 11) ∧ (6x− 11 ≡ 0 mod 2) ∨
(2x+ z + 3 6 6x− 12) ∧ (6x− 11 ≡ 1 mod 2)

Theorem 3 (Presburger 1929).
There exists an algorithm that,
given a quantifier-free formula ϕ and variable x,
outputs a quantifier-free formula ϕ′ such that (∃x ϕ)⇔ ϕ′.

24/36

More from the symbolic computation view:

⇒ nonlinear extensions [Semenov 1980, 1984]

⇒ counting quantifiers ∃>yx ϕ [Schweikardt 2005]
[Habermehl, Kuske 2015, 2023] [Ch., Haase, Mansutti 2022]

⇒ parametric Presburger arithmetic
[Bogart, Goodrick, Woods 2017]

25/36

Theorem (Oppen 1973).
There is an algorithm that solves the decision problem for
Presburger arithmetic in triply exponential time.

In fact, all three views provide 3-exp decision procedures.
[Klaedtke 2008, Durand-Gasselin and Habermehl 2010, 2012]

[Ch., Haase, Mansutti 2022]

I Deciding Presburger arithmetic requires nondet. 2-exp time
[Fischer and Rabin, 1974]

I . . . and is complete for STA(∗, 22n
O(1)

, n) [Berman, 1980]

26/36

Theorem (Oppen 1973).
There is an algorithm that solves the decision problem for
Presburger arithmetic in triply exponential time.

In fact, all three views provide 3-exp decision procedures.
[Klaedtke 2008, Durand-Gasselin and Habermehl 2010, 2012]

[Ch., Haase, Mansutti 2022]

I Deciding Presburger arithmetic requires nondet. 2-exp time
[Fischer and Rabin, 1974]

I . . . and is complete for STA(∗, 22n
O(1)

, n) [Berman, 1980]

26/36

Theorem (Oppen 1973).
There is an algorithm that solves the decision problem for
Presburger arithmetic in triply exponential time.

In fact, all three views provide 3-exp decision procedures.
[Klaedtke 2008, Durand-Gasselin and Habermehl 2010, 2012]

[Ch., Haase, Mansutti 2022]

I Deciding Presburger arithmetic requires nondet. 2-exp time
[Fischer and Rabin, 1974]

I . . . and is complete for STA(∗, 22n
O(1)

, n) [Berman, 1980]

26/36

Three views on integer programming

[Feasibility problem of] integer (linear) programming:

Input: matrix A ∈ Zm×n and vector c ∈ Zm.
Output: does the system A · x 6 c have a solution in Zn?

Theorem (Borosh, Treybig 1976,
von zur Gathen, Sieveking 1978, Papadimitriou 1981).

Integer programming is NP-complete.

Corollary (Oppen 1978).

Existential Presburger arithmetic is NP-complete.

Actually: membership in NP via each of three views.

27/36

Three views on integer programming

[Feasibility problem of] integer (linear) programming:

Input: matrix A ∈ Zm×n and vector c ∈ Zm.
Output: does the system A · x 6 c have a solution in Zn?

Theorem (Borosh, Treybig 1976,
von zur Gathen, Sieveking 1978, Papadimitriou 1981).

Integer programming is NP-complete.

Corollary (Oppen 1978).

Existential Presburger arithmetic is NP-complete.

Actually: membership in NP via each of three views.

27/36

Three views on integer programming

[Feasibility problem of] integer (linear) programming:

Input: matrix A ∈ Zm×n and vector c ∈ Zm.
Output: does the system A · x 6 c have a solution in Zn?

Theorem (Borosh, Treybig 1976,
von zur Gathen, Sieveking 1978, Papadimitriou 1981).

Integer programming is NP-complete.

Corollary (Oppen 1978).

Existential Presburger arithmetic is NP-complete.

Actually: membership in NP via each of three views.

27/36

Three views on integer programming

[Feasibility problem of] integer (linear) programming:

Input: matrix A ∈ Zm×n and vector c ∈ Zm.
Output: does the system A · x 6 c have a solution in Zn?

Theorem (Borosh, Treybig 1976,
von zur Gathen, Sieveking 1978, Papadimitriou 1981).

Integer programming is NP-complete.

Corollary (Oppen 1978).

Existential Presburger arithmetic is NP-complete.

Actually: membership in NP via each of three views.

27/36

1. Three views on linear integer arithmetic (LIA)

— from geometry: Semi-linear sets
— from automata theory: k-automatic sets
— from symbolic computation: Quantifier elimination

2. Integer programming in NP by quantifier elimination

— Gaussian elimination

28/36

Why use quantifier elimination for integer programming?

Theorem (just seen).
Integer linear programming is in NP.

This talk: show this by quantifier elimination.
(Prior QE procedures produce 2-exp big formulas on ILP.)

Theorem (Ch., Mansutti, Starchak 2024).
Integer linear-exponential programming is in NP.

(That is: additionally handling y = 2x and y = (z mod 2x).)

29/36

Why use quantifier elimination for integer programming?

Theorem (just seen).
Integer linear programming is in NP.

This talk: show this by quantifier elimination.
(Prior QE procedures produce 2-exp big formulas on ILP.)

Theorem (Ch., Mansutti, Starchak 2024).
Integer linear-exponential programming is in NP.

(That is: additionally handling y = 2x and y = (z mod 2x).)

29/36

Why use quantifier elimination for integer programming?

Theorem (just seen).
Integer linear programming is in NP.

This talk: show this by quantifier elimination.
(Prior QE procedures produce 2-exp big formulas on ILP.)

Theorem (Ch., Mansutti, Starchak 2024).
Integer linear-exponential programming is in NP.

(That is: additionally handling y = 2x and y = (z mod 2x).)

29/36

Solving systems of linear equations

over Q over Z
Equalities only

in P in P

Inequalities

in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)

30/36

Solving systems of linear equations

over Q over Z
Equalities only in P

in P

Inequalities

in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)

30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities

in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)

30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P

NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)

30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)

30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination

(Gauss—Jordan 1888, Clasen 1888)


.

.

.

.

.

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination

(Gauss—Jordan 1888, Clasen 1888)


*

.

.

.

.

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination

(Gauss—Jordan 1888, Clasen 1888)


*

0

0

0

0

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination

(Gauss—Jordan 1888, Clasen 1888)


*

0 *

0

0

0

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination

(Gauss—Jordan 1888, Clasen 1888)


*

0 *

0 0

0 0

0 0

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)


* 0

0 *

0 0

0 0

0 0

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)


* 0

0 *

0 0 *

0 0

0 0

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)


* 0 0

0 * 0

0 0 *

0 0 0

0 0 0

× x =


.

.

.

.

.



30/36

Solving systems of linear equations

over Q over Z
Equalities only in P in P
Inequalities in P NP-complete

Gaussian elimination (Gauss—Jordan 1888, Clasen 1888)


* 0 0

0 * 0

0 0 *

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

× x =


.

.

.

.

.



30/36

Integer linear programming in NP by quantifier elimination

ϕ(x,y) : system of linear equalities

and inequalities

replace each τ 6 0 with τ + z = 0, where z ∈ N is a slack variable
`← 1; s← ()
foreach x in x do

if no equality contains x then continue

a · x+ τ = 0 (with a 6= 0)← an arbitrary equality that contains x
p← `; `← a
if τ contains a slack variable z not assigned by s then

v ← guess an integer in [0, |a| ·mod(ϕ)− 1]
append pair 〈v, z〉 to s

multiply all constraints in ϕ by a and replace x by −τ/a
divide each constraint in ϕ by p
ϕ← ϕ ∧ (a | τ)

apply substitutions of s

31/36

Integer linear programming in NP by quantifier elimination

ϕ(x,y) : system of linear equalities

and inequalities

replace each τ 6 0 with τ + z = 0, where z ∈ N is a slack variable
`← 1; s← ()
foreach x in x do /* growth of coefficients is exponential */

if no equality contains x then continue

a · x+ τ = 0 (with a 6= 0)← an arbitrary equality that contains x
p← `; `← a
if τ contains a slack variable z not assigned by s then

v ← guess an integer in [0, |a| ·mod(ϕ)− 1]
append pair 〈v, z〉 to s

multiply all constraints in ϕ by a and replace x by −τ/a
divide each constraint in ϕ by p
ϕ← ϕ ∧ (a | τ)

apply substitutions of s

31/36

Integer linear programming in NP by quantifier elimination

ϕ(x,y) : system of linear equalities

and inequalities

replace each τ 6 0 with τ + z = 0, where z ∈ N is a slack variable
`← 1; s← ()
foreach x in x do /* growth of coefficients is now polynomial */

if no equality contains x then continue

a · x+ τ = 0 (with a 6= 0)← an arbitrary equality that contains x
p← `; `← a
if τ contains a slack variable z not assigned by s then

v ← guess an integer in [0, |a| ·mod(ϕ)− 1]
append pair 〈v, z〉 to s

multiply all constraints in ϕ by a and replace x by −τ/a
divide each constraint in ϕ by p
ϕ← ϕ ∧ (a | τ)

apply substitutions of s

31/36

Integer linear programming in NP by quantifier elimination

ϕ(x,y) : system of linear equalities

and inequalities

replace each τ 6 0 with τ + z = 0, where z ∈ N is a slack variable
`← 1; s← ()
foreach x in x do /* now over Z */

if no equality contains x then continue

a · x+ τ = 0 (with a 6= 0)← an arbitrary equality that contains x
p← `; `← a
if τ contains a slack variable z not assigned by s then

v ← guess an integer in [0, |a| ·mod(ϕ)− 1]
append pair 〈v, z〉 to s

multiply all constraints in ϕ by a and replace x by −τ/a
divide each constraint in ϕ by p
ϕ← ϕ ∧ (a | τ)

apply substitutions of s

31/36

Integer linear programming in NP by quantifier elimination

ϕ(x,y) : system of linear equalities and inequalities

replace each τ 6 0 with τ + z = 0, where z ∈ N is a slack variable
`← 1; s← ()
foreach x in x do /* with inequalities... */

if no equality contains x then continue

a · x+ τ = 0 (with a 6= 0)← an arbitrary equality that contains x
p← `; `← a
if τ contains a slack variable z not assigned by s then

v ← guess an integer in [0, |a| ·mod(ϕ)− 1]
append pair 〈v, z〉 to s

multiply all constraints in ϕ by a and replace x by −τ/a
divide each constraint in ϕ by p
ϕ← ϕ ∧ (a | τ)

apply substitutions of s

31/36

Integer linear programming in NP by quantifier elimination

ϕ(x,y) : system of linear equalities and inequalities

replace each τ 6 0 with τ + z = 0, where z ∈ N is a slack variable
`← 1; s← ()
foreach x in x do /*... and shifts */

if no equality contains x then continue

a · x+ τ = 0 (with a 6= 0)← guess an equality that contains x
p← `; `← a
if τ contains a slack variable z not assigned by s then

v ← guess an integer in [0, |a| ·mod(ϕ)− 1]
append pair 〈v, z〉 to s /* substitution */

multiply all constraints in ϕ by a and replace x by −τ/a
divide each constraint in ϕ by p
ϕ← ϕ ∧ (a | τ)

apply substitutions of s

31/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0

(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣

— the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.

In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]

[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968]

[Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967]

[Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888]

[Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]

(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]

(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)

∣∣∣∣∣∣∣∣∣
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

The magic of division by p (previous pivot)

ax+ by + t′ = 0
cx+ dy + t′′ = 0
(ad− bc) y + (at′′ − ct′) = 0

The new coefficient is

∣∣∣∣a b
c d

∣∣∣∣ — the bit size of numbers doubles.
In fact, after 2 steps a common factor appears. [Weispfenning 1997]
[Bareiss 1968] [Edmonds 1967] [Clasen 1888] [Dodgson 1867]
(Sylvester’s determinant identity / Desnanot—Jacobi identity 1851)∣∣∣∣∣∣∣∣∣

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣a11 a13
a21 a23

∣∣∣∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣a11 a13
a31 a33

∣∣∣∣
∣∣∣∣∣∣∣∣∣ = a11 ·

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣

Image source: John Tenniel. Book by Lewis Carroll, published by Macmillan, 1925. 32/36

Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given ϕ : A · x +B · y 6 c, each non-deterministic branch β
outputs ψβ : Fβ · y 6 gβ such that (∃x ϕ)⇔

∨
β

ψβ.

Gaussian elimination

+ slack variables

Bareiss factors
· non-determinism =⇒

=⇒ IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]

33/36

Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given ϕ : A · x +B · y 6 c, each non-deterministic branch β
outputs ψβ : Fβ · y 6 gβ such that (∃x ϕ)⇔

∨
β

ψβ.

Gaussian elimination + slack variables

Bareiss factors
· non-determinism =⇒

=⇒ IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]

33/36

Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given ϕ : A · x +B · y 6 c, each non-deterministic branch β
outputs ψβ : Fβ · y 6 gβ such that (∃x ϕ)⇔

∨
β

ψβ.

Gaussian elimination + slack variables

Bareiss factors

· non-determinism =⇒

=⇒ IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]

33/36

Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given ϕ : A · x +B · y 6 c, each non-deterministic branch β
outputs ψβ : Fβ · y 6 gβ such that (∃x ϕ)⇔

∨
β

ψβ.

Gaussian elimination + slack variables

Bareiss factors
· non-determinism

=⇒

=⇒ IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]

33/36

Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given ϕ : A · x +B · y 6 c, each non-deterministic branch β
outputs ψβ : Fβ · y 6 gβ such that (∃x ϕ)⇔

∨
β

ψβ.

Gaussian elimination + slack variables

Bareiss factors
· non-determinism =⇒

=⇒ IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]

33/36

Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given ϕ : A · x +B · y 6 c, each non-deterministic branch β
outputs ψβ : Fβ · y 6 gβ such that (∃x ϕ)⇔

∨
β

ψβ.

Gaussian elimination + slack variables

Bareiss factors
· non-determinism =⇒

=⇒ IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]

33/36

Theorem (Ch., Mansutti, Starchak 2024).
The algorithm runs in non-deterministic polynomial time.
Given ϕ : A · x +B · y 6 c, each non-deterministic branch β
outputs ψβ : Fβ · y 6 gβ such that (∃x ϕ)⇔

∨
β

ψβ.

Gaussian elimination + slack variables

Bareiss factors
· non-determinism =⇒

=⇒ IP in NP by QE

Concurrently: a different QE procedure
[Haase, Krishna, Madnani, Mishra, Zetzsche 2024]

33/36

Michael Benedikt Alessio Mansutti
(Oxford) (IMDEA Software Institute)

Christoph Haase Mikhail Starchak
(Oxford) (St Petersburg)

Summary

1. Three views on linear integer arithmetic (LIA)

— from geometry: Semi-linear sets
— from automata theory: k-automatic sets
— from symbolic computation: Quantifier elimination

2. Integer programming in NP by quantifier elimination

— Gaussian elimination

35/36

Further directions

I Computational complexity of extensions
(e.g.: counting quantifiers ∃>yx ϕ; ∃ divisibility x | y)

I Decidability of nonlinear extensions
(e.g., ∃ with several power predicates)

I Applications; computational complexity in special cases

Thank you!

https://warwick.ac.uk/chdir

36/36

https://warwick.ac.uk/chdir

Further directions

I Computational complexity of extensions
(e.g.: counting quantifiers ∃>yx ϕ; ∃ divisibility x | y)

I Decidability of nonlinear extensions
(e.g., ∃ with several power predicates)

I Applications; computational complexity in special cases

Thank you!

https://warwick.ac.uk/chdir

36/36

https://warwick.ac.uk/chdir

Learn more:

1. A.R. Bradley, Z. Manna. The calculus of computation: decision procedures
with applications to verification. Springer (2007).

2. S. Demri. Rudiments of Presburger arithmetic. Lecture notes (MPRI, M2,
2016). hal-03188114

3. C. Haase. A survival guide to Presburger arithmetic. SIGLOG News (2018).

4. D. Chistikov. An introduction to the theory of linear integer arithmetic.
FSTTCS 2024.

1/1

https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://hal.science/hal-03188114/
https://www.cs.ox.ac.uk/people/christoph.haase/home/publication/haa-18/haa-18.pdf
https://doi.org/10.4230/LIPIcs.FSTTCS.2024.1

	Three views on linear integer arithmetic (LIA)
	— from geometry: Semi-linear sets
	— from automata theory: k-automatic sets
	— from symbolic computation: Quantifier elimination

	Integer programming in NP by quantifier elimination
	— Gaussian elimination

	Appendix

