A Complexity Dichotomy for Semilinear Target Sets in Automata with One Counter

Yousef Shakiba¹ and Henry Sinclair-Banks² and Georg Zetzsche¹

¹Max Planck Institute for Software Systems (MPI-SWS)

²University of Warsaw

CAALM 2025, Paris, June 2-6, 2025

work to appear at LICS 2025

Reachability problem Given Automaton, number $t \in \mathbb{N}$ Question Can we reach (f, t)?

Given Automaton, number $t \in \mathbb{N}$

Question Can we reach (f, x) such that $x \ge t$?

Question Can we reach (f, x) such that $x \ge t$?

in P (even AC^1)

Given Automaton, number $t \in \mathbb{N}$ Question Can we reach (f, x) such that $x \ge t$?

in P (even
$$AC^1$$
)

Coverability vs. Reachability

VAS (EXPSPACE vs. Ackermann), reset VAS (decidable vs. undecidable)

Given Automaton, number $t \in \mathbb{N}$ Question Can we reach (f, x) such that $x \ge t$?

in P (even
$$AC^1$$
)

Coverability vs. Reachability

VAS (EXPSPACE vs. Ackermann), reset VAS (decidable vs. undecidable)

Which target sets admit P algorithm?

Given Automaton, number $t \in \mathbb{N}$ Question Can we reach (f, x) such that $x \ge t$?

in P (even
$$AC^1$$
)

Coverability vs. Reachability

VAS (EXPSPACE vs. Ackermann), reset VAS (decidable vs. undecidable)

Which target sets admit P algorithm? General toolbox beyond coverability? $S \subseteq \mathbb{N}^p \times \mathbb{N}$ Presburger-defined set, p: number of parameters

The problem $\operatorname{Reach}(S)$

The problem $\operatorname{Reach}(S)$

The problem $\operatorname{Reach}(S)$

The problem $\operatorname{Reach}(S)$

$S_t = \{t\}$		$S_t = [t,\infty)$
---------------	--	--------------------

The problem $\operatorname{Reach}(S)$

The problem $\operatorname{Reach}(S)$

$$S_{r,s,t} = [t,\infty) \setminus \{r,s\}$$

The problem $\operatorname{Reach}(S)$

The problem $\operatorname{Reach}(S)$

$$S_{r,s,t} = [t,\infty) \setminus \{r,s\}$$

$$S_t = \{2t+1\} \cup 2\mathbb{N}$$

The problem $\operatorname{Reach}(S)$

$$S_{r,s,t} = [t,\infty) \setminus \{r,s\}$$

$$S_t = \{2t+1\} \cup 2\mathbb{N}$$

The problem $\operatorname{Reach}(S)$

$$S_t = \{2t+1\} \cup 2\mathbb{N}$$

$$S_t = [t, 2t]$$

The problem $\operatorname{Reach}(S)$

$$S_t = \{2t+1\} \cup 2\mathbb{N}$$

$$S_t = [t, 2t]$$

The problem $\operatorname{Reach}(S)$

$$S_t = \{2t+1\} \cup 2\mathbb{N}$$

$$S_t = [t, 2t]$$

$$S_{s,t} = [t, 2t] \cup [s, s+t]$$

The problem $\operatorname{Reach}(S)$

$$S_t = \{2t+1\} \cup 2\mathbb{N}$$

$$S_t = [t, 2t]$$

$$S_{s,t} = [t, 2t] \cup [s, s+t]$$

$$D(S,x) := \frac{|S \cap (x + [-n,n])|}{2n+1}$$

$$D(S,x) := \inf_{\substack{n \in \mathbb{N} \\ x+ [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x + [-n,n])|}{2n+1}$$

$$D(S,x) := \inf_{\substack{k \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S) := \inf_{t \in \mathbb{N}^p} \inf_{x \in S_t} D(S_t, x)$$

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S) := \inf_{t \in \mathbb{N}^p} \inf_{x \in S_t} D(S_t, x)$$

Theorem (Shakiba, Sinclair-Banks, Z. 2025) Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S) := \inf_{t \in \mathbb{N}^p} \inf_{x \in S_t} D(S_t, x)$$

Theorem (Shakiba, Sinclair-Banks, Z. 2025) Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable. If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathbb{P}$.

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S) := \inf_{t \in \mathbb{N}^p} \inf_{x \in S_t} D(S_t, x)$$

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S) := \inf_{t \in \mathbb{N}^p} \inf_{x \in S_t} D(S_t, x)$$

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC^1/NP dichotomies with negative updates:

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S) := \inf_{t \in \mathbb{N}^p} \inf_{x \in S_t} D(S_t, x)$$

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^{p} \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC^1/NP dichotomies with negative updates:

• VASS (must stay non-negative): "uniformly quasi-upward closed"

$$D(S,x) := \inf_{k \in \mathbb{N}} \inf_{\substack{n \in \mathbb{N} \\ x+k \cdot [-n,n] \subseteq \mathbb{N}}} \frac{|S \cap (x+k \cdot [-n,n])|}{2n+1}$$

For $S \subseteq \mathbb{N}^p \times \mathbb{N}$:

$$D(S) := \inf_{t \in \mathbb{N}^p} \inf_{x \in S_t} D(S_t, x)$$

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC^1/NP dichotomies with negative updates:

- VASS (must stay non-negative): "uniformly quasi-upward closed"
- \mathbb{Z} -VASS (counters can go negative): modified density notion

$$S_t = [t, 2t]$$

$$S_t = [t, 2t]$$

$$S_t = [t, 2t]$$

$$S_{s,t} = [s+t, s+2t] \cup [s+3t, 2s+4t]$$

$$s+t \quad t \quad s+t$$

$$0$$

Step I: Make automaton acyclic

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006)

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

= polynomials in X over Boolean semiring

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

matrix over $\mathbb{B}[X]$ = polynomials in X over Boolean semiring

$$(A^n)_{ij} = \sum_{\pi \text{ path from } i \text{ to } j \text{ of length } \leqslant n} X^{\text{weight of } \pi}$$

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

matrix over $\mathbb{B}[X]$ = polynomials in X over Boolean semiring

$$(A^n)_{ij} = \sum_{\substack{\pi \text{ path from } i \text{ to } j \text{ of length } \leqslant n}} X^{\text{weight of } \pi}$$

 A^n contains all the information we need

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

matrix over $\mathbb{B}[X]$ = polynomials in X over Boolean semiring

$$(A^n)_{ij} = \sum_{\substack{\pi \text{ path from } i \text{ to } j \text{ of length } \leqslant n}} X^{\text{weight of } \pi}$$

Aⁿ contains all the information we need Problem: collects exponentially many terms

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

matrix over $\mathbb{B}[X]$ = polynomials in X over Boolean semiring

$$(A^n)_{ij} = \sum_{\substack{\pi \text{ path from } i \text{ to } j \text{ of length } \leqslant n}} X^{\text{weight of } \pi}$$

Aⁿ contains all the information we need Problem: collects exponentially many terms For coverability: Use max-plus semiring

Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006) Step II: Translation into matrix multiplication

matrix over $\mathbb{B}[X]$ = polynomials in X over Boolean semiring

$$(A^n)_{ij} = \sum_{\substack{\pi \text{ path from } i \text{ to } j \text{ of length } \leqslant n}} X^{\text{weight of } \pi}$$

 A^n contains all the information we need Problem: collects exponentially many terms For coverability: Use max-plus semiring Equivalently: impose $X^i + X^j = X^{\max(i,j)}$

$$X^i = 0$$

for i > 2t

$$X^{i} = 0 \qquad \text{for } i > 2t$$

$$X^{i} + X^{j} = X^{i} + X^{i+1} + \dots + X^{j} \qquad \text{for } |i - j| \leq t$$

$$\downarrow$$
 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

$$\begin{aligned} X^i &= 0 & \text{for } i > 2t \\ X^i + X^j &= X^i + X^{i+1} + \dots + X^j & \text{for } |i-j| \leqslant t \end{aligned}$$

Observation

Applying the equation does not affect intersection with [t, 2t]

$$X^{i} = 0 \qquad \text{for } i > 2t$$

$$X^{i} + X^{j} = X^{i} + X^{i+1} + \dots + X^{j} \qquad \text{for } |i - j| \leq t$$

Observation

Applying the equation does not affect intersection with [t, 2t]

Otherwise: *i*, *j* on opposite sides of [t, 2t]

$$X^{i} = 0 \qquad \text{for } i > 2t$$

$$X^{i} + X^{j} = X^{i} + X^{i+1} + \dots + X^{j} \qquad \text{for } |i - j| \leq t$$

Applying the equation does not affect intersection with [t, 2t]

Otherwise: *i*, *j* on opposite sides of [t, 2t]

$$\begin{aligned} X^{i} &= 0 & \text{for } i > 2t \\ X^{i} + X^{j} &= X^{i} + X^{i+1} + \dots + X^{j} & \text{for } |i - j| \leqslant t \end{aligned}$$

Applying the equation does not affect intersection with [t, 2t]

Otherwise: *i*, *j* on opposite sides of $[t, 2t] \rightsquigarrow \text{distance} > t$

$$X^{i} = 0 \qquad \text{for } i > 2t$$

$$X^{i} + X^{j} = X^{i} + X^{i+1} + \dots + X^{j} =: X^{[i,j]} \qquad \text{for } |i-j| \leq t$$

Applying the equation does not affect intersection with [t, 2t]

Otherwise: *i*, *j* on opposite sides of $[t, 2t] \rightsquigarrow \text{distance} > t$

$$X^{i} = 0 \qquad \text{for } i > 2t$$

$$X^{i} + X^{j} = X^{i} + X^{i+1} + \dots + X^{j} = X^{[i,j]} \qquad \text{for } |i-j| \leq t$$

Applying the equation does not affect intersection with [t, 2t]

Otherwise: *i*, *j* on opposite sides of $[t, 2t] \rightsquigarrow \text{distance} > t$

Observation

Every polynomial can be written as a sum of at most two terms $X^{[i,j]}$.

$$X^{i} = 0 \qquad \text{for } i > 2t$$

$$X^{i} + X^{j} = X^{i} + X^{i+1} + \dots + X^{j} = X^{[i,j]} \qquad \text{for } |i-j| \leq t$$

Applying the equation does not affect intersection with [t, 2t]

```
Otherwise: i, j on opposite sides of [t, 2t] \rightsquigarrow \text{distance} > t
```

Observation

Every polynomial can be written as a sum of at most two terms $X^{[ij]}$.

3 terms that cannot be merged

$$X^{i} = 0 \qquad \text{for } i > 2t$$

$$X^{i} + X^{j} = X^{i} + X^{i+1} + \dots + X^{j} = X^{[i,j]} \qquad \text{for } |i-j| \leq t$$

Applying the equation does not affect intersection with [t, 2t]

```
Otherwise: i, j on opposite sides of [t, 2t] \rightsquigarrow \text{distance} > t
```

Observation

Every polynomial can be written as a sum of at most two terms $X^{[i,j]}$.

3 terms that cannot be merged \rightsquigarrow 2 gaps of size $> t \rightsquigarrow$ some term > 2t

First two equations allow too many terms:

First two equations allow too many terms: 2s + 4t fits many *t*-size gaps!

$$S_{s,t} = [s + t, s + 2t] \cup [s + 3t, 2s + 4t]$$

$$\xrightarrow{s+t} t t s+t}$$

$$0$$

$$X^{i} = 0$$
for $i > 2s + 4t$

$$X^{i} + X^{j} = X^{[i,j]}$$
for $|i - j| \leq t$

$$X^{i} + X^{j} + X^{k} = X^{[i,j]} + X^{k}$$
for $|i - j| \leq s + t$,
and $k - j \in [t, s + t]$

First two equations allow too many terms: 2s + 4t fits many *t*-size gaps!

$$S_{s,t} = [s + t, s + 2t] \cup [s + 3t, 2s + 4t]$$

$$\xrightarrow{s+t} t t s+t}$$

$$0$$

$$X^{i} = 0$$
for $i > 2s + 4t$

$$X^{i} + X^{j} = X^{[i,j]}$$
for $|i - j| \le t$

$$X^{i} + X^{j} + X^{k} = X^{[i,j]} + X^{k}$$
for $|i - j| \le s + t$,
and $k - j \in [t, s + t]$

First two equations allow too many terms: 2s + 4t fits many *t*-size gaps!

Observation

Third equation preserves intersection with $S_{s,t}$

First two equations allow too many terms: 2s + 4t fits many *t*-size gaps!

Observation

Third equation preserves intersection with $S_{s,t}$

First two equations allow too many terms: 2s + 4t fits many *t*-size gaps!

Observation

Third equation preserves intersection with $S_{s,t}$

$$S_{s,t} = [s + t, s + 2t] \cup [s + 3t, 2s + 4t]$$

$$\xrightarrow{s+t} t \quad t \quad s+t}$$

$$0 \quad i \quad j \quad k \quad for \ i > 2s + 4t$$

$$X^{i} + X^{j} = X^{[i,j]} \quad for \ |i - j| \leq t$$

$$X^{i} + X^{j} + X^{k} = X^{[i,j]} + X^{k} \quad for \ |i - j| \leq s + t,$$
and $k - j \in [t, s + t]$

First two equations allow too many terms: 2s + 4t fits many *t*-size gaps!

Observation

Third equation preserves intersection with $S_{s,t}$

Lemma

Three equations \rightsquigarrow bounded number of $X^{[i,j]}$ terms

Whenever D(S) > 0, we can find equation system

Whenever D(S) > 0, we can find equation system

To get AC^1 upper bound:

Whenever D(S) > 0, we can find equation system

To get AC^1 upper bound:

• Compute A^n by repeated squaring \rightsquigarrow logarithmic number of steps

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute A^n by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute Aⁿ by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute Aⁿ by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC¹/NP dichotomies:

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute Aⁿ by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC¹/NP dichotomies:

 $\bullet~\mathbb{Z}\text{-VASS}$ (counters can go negative): modified density notion

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute Aⁿ by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC¹/NP dichotomies:

- $\bullet~\mathbb{Z}\text{-VASS}$ (counters can go negative): modified density notion
- VASS (must stay non-negative): "uniformly quasi-upward closed"

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute Aⁿ by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC¹/NP dichotomies:

- $\bullet~\mathbb{Z}\text{-VASS}$ (counters can go negative): modified density notion
- VASS (must stay non-negative): "uniformly quasi-upward closed" In particular: Improved NC² upper bound (by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell in 2020) to AC¹

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute Aⁿ by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC¹/NP dichotomies:

- $\bullet~\mathbb{Z}\text{-VASS}$ (counters can go negative): modified density notion
- VASS (must stay non-negative): "uniformly quasi-upward closed" In particular: Improved NC² upper bound (by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell in 2020) to AC¹

Toolbox: Weighted automata over suitable semirings

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute A^n by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC¹/NP dichotomies:

- $\bullet~\mathbb{Z}\text{-VASS}$ (counters can go negative): modified density notion
- VASS (must stay non-negative): "uniformly quasi-upward closed" In particular: Improved NC² upper bound (by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell in 2020) to AC¹

Toolbox: Weighted automata over suitable semirings Open: Multiple counters

Whenever D(S) > 0, we can find equation system

To get AC¹ upper bound:

- Compute A^n by repeated squaring \rightsquigarrow logarithmic number of steps
- Show that matrix product can be computed in AC⁰

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let $S \subseteq \mathbb{N}^p \times \mathbb{N}$ be Presburger-definable.

- If D(S) > 0, then $\operatorname{Reach}(S)$ is in $\operatorname{AC}^1 \subseteq \mathsf{P}$.
- **2** Otherwise, $\operatorname{Reach}(S)$ is NP-complete.

Similar AC¹/NP dichotomies:

- $\bullet~\mathbb{Z}\text{-VASS}$ (counters can go negative): modified density notion
- VASS (must stay non-negative): "uniformly quasi-upward closed" In particular: Improved NC² upper bound (by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell in 2020) to AC¹

Toolbox: Weighted automata over suitable semirings Open: Multiple counters, e.g. $S = \{(x, y) \in \mathbb{N}^2 \mid x \leq y \leq 2x\}$