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Which target sets admit P algorithm?
General toolbox beyond coverability?
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Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006)
Step Il: Translation into matrix multiplication

X0 x@ Xxe
O o-L.0— ~ X0 xb]=A
c X0

matrix over B[ X]
= polynomials in X over Boolean semiring

(An)U _ Z Xweight of m

7 path from i to j of length < n

A" contains all the information we need
Problem: collects exponentially many terms
For coverability: Use max-plus semiring
Equivalently: impose X/ + XJ = xmax(ij)



2t

A\ 4



X =0

2t

A\ 4

for i > 2t



X =0

XX =X+ X 4oy X

A\ 4

for i > 2t

for |i—jl <t



A\ 4

X =0 for i > 2t
X4 X=X+ X 44 X for [i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2¢]




A\ 4

X =0 for i > 2t
X4 X=X+ X 44 X for [i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2]

Otherwise: i, j on opposite sides of [t, 2]



0it 2t)

X =0 for i > 2t
X4 X=X+ X 44 X for [i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2]

Otherwise: i, j on opposite sides of [t, 2]



0it 2t)

X =0 for i > 2t
X4 X=X+ X 44 X for [i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2]

Otherwise: i, j on opposite sides of [t,2t] ~~ distance > ¢t



0it 2t)

Xf:0 for i > 2t
X+ X =X 4 XXt = xW for |i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2]

Otherwise: i, j on opposite sides of [t,2t] ~~ distance > ¢t



0it 2t)

Xf:0 for i > 2t
X+ X =X+ X xt = xW for |i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2]

Otherwise: i, j on opposite sides of [t,2t] ~~ distance > ¢t

Observation

Every polynomial can be written as a sum of at most two terms X7/,




0it 2t)

Xi — 0 for i > 2t
XX =X 4 X x) =X for|i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2]

Otherwise: i, j on opposite sides of [t,2t] ~~ distance > ¢t

Observation

Every polynomial can be written as a sum of at most two terms X7/,

3 terms that cannot be merged



0it 2t)

Xi — 0 for i > 2t
XX =X 4 X x) =X for|i—jl <t

Observation
Applying the equation does not affect intersection with [t, 2]

Otherwise: i, j on opposite sides of [t,2t] ~~ distance > ¢t

Observation

Every polynomial can be written as a sum of at most two terms X7/,

3 terms that cannot be merged ~~ 2 gaps of size > t ~» some term > 2t
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Lemma

Three equations ~ bounded number of X[/J] terms
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@ Otherwise, Reach(S) is NP-complete.
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