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Reachability problem

Given Automaton, number t P N
Question Can we reach pf , tq?

NP-complete

Coverability problem

Given Automaton, number t P N
Question Can we reach pf , xq such that x ě t?

in P (even AC1)

Coverability vs. Reachability

VAS (EXPSPACE vs. Ackermann), reset VAS (decidable vs. undecidable)

Which target sets admit P algorithm?
General toolbox beyond coverability?
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S Ď Np ˆ N Presburger-defined set, p: number of parameters

Defines target sets: St “ tx P N | pt, xq P Su

The problem ReachpSq

Given Automaton, parameter vector t P Np

Question Can we reach pf , xq such that x P St?

St “ ttu St “ rt,8q Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N St “ rt, 2ts Ss,t “ rt, 2ts Y rs, s ` ts
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For S Ď N with x P S :

DpS , xq :“

inf
kPN

inf
nPN

x`

k¨

r´n,nsĎN

|S X px `

k ¨

r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“

inf
kPN

inf
nPN

x`

k¨

r´n,nsĎN

|S X px `

k ¨

r´n, nsq|

2n ` 1

Probability of hitting S within x ` r´n, ns

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“

inf
kPN

inf
nPN

x`

k¨

r´n,nsĎN

|S X px `

k ¨

r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



For S Ď N with x P S :

DpS , xq :“ inf
kPN

inf
nPN

x`k¨r´n,nsĎN

|S X px ` k ¨ r´n, nsq|

2n ` 1

For S Ď Np ˆ N:

DpSq :“ inf
tPNp

inf
xPSt

DpSt , xq

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies with negative updates:

VASS (must stay non-negative): “uniformly quasi-upward closed”

Z-VASS (counters can go negative): modified density notion



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



St “ ttu

0 t

DpSq “ 0

St “ rt,8q

0 t

DpSq “ 1
2

Similarly: Sr ,s,t “ rt,8qztr , su

St “ t2t ` 1u Y 2N

0 t

DpSq “ 0

St “ rt, 2ts

0 t 2t

DpSq “ 1
4

Ss,t “ rs ` t, s ` 2ts Y rs ` 3t, 2s ` 4ts

0

s+t t t s+t

DpSq “ 1
4



How to solve cases with DpSq ą 0?
Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006)
Step II: Translation into matrix multiplication

a b

c
⇝

¨

˝

X 0 X a X c

X 0 X b

X 0

˛

‚

“: A

matrix over BrX s

= polynomials in X over Boolean semiring

pAnqij “
ÿ

π path from i to j of length ď n

Xweight of π

An contains all the information we need
Problem: collects exponentially many terms
For coverability: Use max-plus semiring
Equivalently: impose X i ` X j “ Xmaxpi ,jq
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0 t 2t

i j

X i “ 0 for i ą 2t

X i ` X j “ X i ` X i`1 ` ¨ ¨ ¨ ` X j

“: X ri ,js

for |i ´ j | ď t

Observation

Applying the equation does not affect intersection with rt, 2ts

Otherwise: i , j on opposite sides of rt, 2ts ⇝ distance ą t

Observation

Every polynomial can be written as a sum of at most two terms X ri ,js.

3 terms that cannot be merged ⇝ 2 gaps of size ą t ⇝ some term ą 2t
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s+t t t s+t

i j k
X i “ 0 for i ą 2s ` 4t

X i ` X j “ X ri ,js for |i ´ j | ď t

X i ` X j ` X k “ X ri ,js ` X k for |i ´ j | ď s ` t,

and k ´ j P rt, s ` ts

Observation

First two equations allow too many terms:

2s ` 4t fits many t-size gaps!

Observation

Third equation preserves intersection with Ss,t

Lemma

Three equations ⇝ bounded number of X ri ,js terms
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This is always possible:

Whenever DpSq ą 0, we can find equation system

To get AC1 upper bound:

Compute An by repeated squaring ⇝ logarithmic number of steps

Show that matrix product can be computed in AC0

Theorem (Shakiba, Sinclair-Banks, Z. 2025)

Let S Ď Np ˆ N be Presburger-definable.

1 If DpSq ą 0, then ReachpSq is in AC1 Ď P.

2 Otherwise, ReachpSq is NP-complete.

Similar AC1{NP dichotomies:

Z-VASS (counters can go negative): modified density notion

VASS (must stay non-negative): “uniformly quasi-upward closed”

In particular: Improved NC2 upper bound (by Almagor, Cohen, Pérez,
Shirmohammadi, and Worrell in 2020) to AC1

Toolbox: Weighted automata over suitable semirings
Open: Multiple counters, e.g. S “ tpx , yq P N2 | x ď y ď 2xu
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