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Which target sets admit P algorithm?
General toolbox beyond coverability?
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Step I: Make automaton acyclic

Carathéodory bound on integer cones (Eisenbrand & Shmonin 2006)
Step Il: Translation into matrix multiplication

X0 x@ Xxe
O o-L.0— ~ X0 xb]=A
c X0

matrix over B[ X]
= polynomials in X over Boolean semiring

(An)U _ Z Xweight of m

7 path from i to j of length < n

A" contains all the information we need
Problem: collects exponentially many terms
For coverability: Use max-plus semiring
Equivalently: impose X/ + XJ = xmax(ij)
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3 terms that cannot be merged ~~ 2 gaps of size > t ~» some term > 2t
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Lemma

Three equations ~ bounded number of X[/J] terms
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