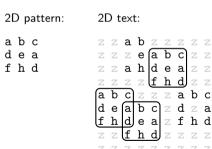
Faster 2D Pattern Matching With k Mismatches

Jonas Ellert, Paweł Gawrychowski, Adam Górkiewicz, Tatiana Starikovskaya

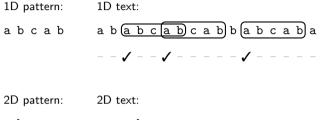
1D pattern: 1D text: a b c a b a b c a b c a b b a b c a b a

1D pattern: 1D text: abcab ab<u>abcab</u>b<u>abcab</u>a

2D pattern:	2D text:								
abc	Z	Z	а	b	Z	Z	Z	Z	Z
dea	Z	Z	Z	е	а	b	С	Z	Z
fhd	Z	Z	а	\mathbf{h}	d	е	а	Z	Z
	Z	Z	Z	Z	f	h	d	Z	Z
	а	b	с	Z	Z	Z	а	b	C
	d	е	а	b	с	Z	d	Z	а
	f	h	d	е	а	Z	f	h	ċ
	Z	Z	f	h	d	Z	Z	Z	Z
	Z	Z	Z	Z	Z	Z	Z	Z	Z



2D pattern:	2D text:	
abc	zz ab <u>zzz</u> zz	
dea	zzzeabc]zz	🗸
f h d	zzahdeazz	
	zzzz fhd zz	
	abczzzabc	✓ ·
	d e a b c z d z a	🗸
	fhdeazfhd	
	zz fhd zzzz	
	7 7 7 7 7 7 7 7 7 7	



What if we allow up to k mismatches?

abc	zz ab zzzz	_	_		_			-		
d e a	zzzeabczz	-	-	-	-	1	-	_	-	-
f h d	zzahdeazz				—	-				
	zzzz fhd zz		-	-	_	-	_		_	
	abczzzabc	1	_	-	—	_	—		—	-
	d e a b c z d z a f h d e a z f h d	-	-	1	—	-	—	_	—	
	<u>f h d</u> e a z f h d	—	_	_	—	—	—	_	—	-
	zz fhd zzzz	—	_	-	-	-	-	-	-	-
	Z Z Z Z Z Z Z Z Z	_	_	_	_	_	_	_	_	_

1D pattern:

1D text:

abcab

a b a b c a b c a b b a b c a b a

What if we allow up to k mismatches?

for example, k = 3 mismatches

2D pattern: 2D text: a b c z z a b z d e a z z z e a f h d z z a h d

zz ab zzzzz		
zzzeabczz	🗸	
zzahdeazz		
zzzz fhd zz		
abczzzabc	🖌	
deabczdza	🗸	
d e a b c z d z a f h d e a z f h d		
zz fhd zzzz		
7 7 7 7 7 7 7 7 7 7 7		

1D pattern:

1D text:

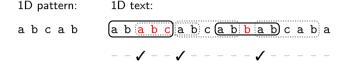
abcab

a b <u>a b c a b c a b b a b</u> c a b a

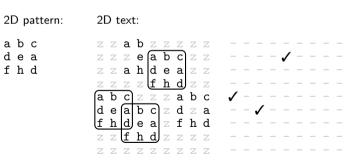
What if we allow up to k mismatches?

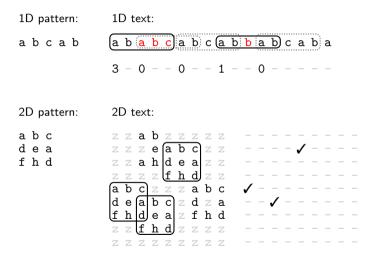
for example, k = 3 mismatches

2D pattern: 2D text: abc zzabzzzz dea zzzeabczz - - - - / - - - fhd ahdeazz ΖZ f h d z z a b Czzzabc abczdza е hdle alz fhd h d

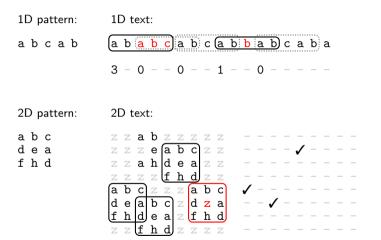


What if we allow up to k mismatches?

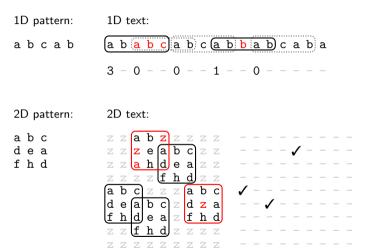




What if we allow up to k mismatches?

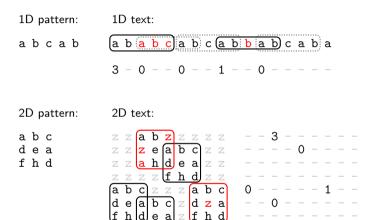


What if we allow up to k mismatches?

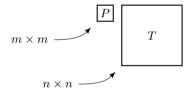


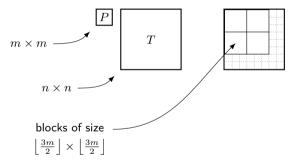
What if we allow up to k mismatches?

lf h dJ

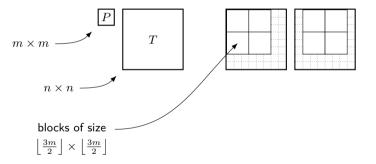


What if we allow up to k mismatches?

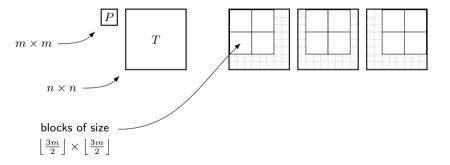




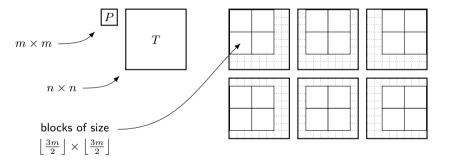
Assume that
$$n = \lfloor \frac{3m}{2} \rfloor$$
, otherwise solve $\mathcal{O}(n/m)$ instances of size $\lfloor \frac{3m}{2} \rfloor$ (in 1D),
or $\mathcal{O}(n^2/m^2)$ instances of size $\lfloor \frac{3m}{2} \rfloor \times \lfloor \frac{3m}{2} \rfloor$ (in 2D).



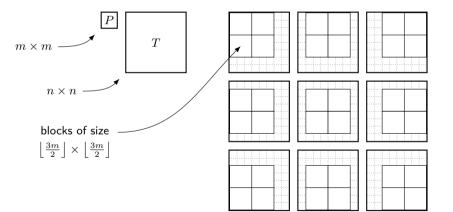
Assume that
$$n = \lfloor \frac{3m}{2} \rfloor$$
, otherwise solve $\mathcal{O}(n/m)$ instances of size $\lfloor \frac{3m}{2} \rfloor$ (in 1D),
or $\mathcal{O}(n^2/m^2)$ instances of size $\lfloor \frac{3m}{2} \rfloor \times \lfloor \frac{3m}{2} \rfloor$ (in 2D).



Assume that
$$n = \lfloor \frac{3m}{2} \rfloor$$
, otherwise solve $\mathcal{O}(n/m)$ instances of size $\lfloor \frac{3m}{2} \rfloor$ (in 1D),
or $\mathcal{O}(n^2/m^2)$ instances of size $\lfloor \frac{3m}{2} \rfloor \times \lfloor \frac{3m}{2} \rfloor$ (in 2D).



Assume that
$$n = \lfloor \frac{3m}{2} \rfloor$$
, otherwise solve $\mathcal{O}(n/m)$ instances of size $\lfloor \frac{3m}{2} \rfloor$ (in 1D),
or $\mathcal{O}(n^2/m^2)$ instances of size $\lfloor \frac{3m}{2} \rfloor \times \lfloor \frac{3m}{2} \rfloor$ (in 2D).



		1D time	2D time	
exact PM	[Knuth, Morris, Pratt 77]	$\mathcal{O}(m)$	$\mathcal{O}(m^2)$	[Bird 77]

		1D time	2D time	
exact PM	[Knuth, Morris, Pratt 77]	$\mathcal{O}(m)$	$\mathcal{O}(m^2)$	[Bird 77]
∞ -mismatch	[Fischer, Paterson 74]	$ ilde{\mathcal{O}}(m \cdot \Sigma)$	$ ilde{\mathcal{O}}(m^2 \cdot \Sigma)$	[Fischer, Paterson 74]

		1D time	2D time	
exact PM	[Knuth, Morris, Pratt 77]	$\mathcal{O}(m)$	${\cal O}(m^2)$	[Bird 77]
∞ -mismatch	[Fischer, Paterson 74]	$ ilde{\mathcal{O}}(m \cdot \Sigma)$	$ ilde{\mathcal{O}}(m^2 \cdot \Sigma)$	[Fischer, Paterson 74]
k-mismatch	[Landau, Vishkin 86]	$\mathcal{O}(mk)$	$\mathcal{O}(m^2k)$	[Amir, Landau 91]

		1D time	2D time	
exact PM	[Knuth, Morris, Pratt 77]	$\mathcal{O}(m)$	$\mathcal{O}(m^2)$	[Bird 77]
∞ -mismatch	[Fischer, Paterson 74]	$ ilde{\mathcal{O}}(m \cdot \Sigma)$	$ ilde{\mathcal{O}}(m^2 \cdot \Sigma)$	[Fischer, Paterson 74]
k-mismatch	[Landau, Vishkin 86]	$\mathcal{O}(mk)$	$\mathcal{O}(m^2k)$	[Amir, Landau 91]
	[Amir, Lewenstein, Porat 04]	$ ilde{\mathcal{O}}(m\sqrt{k})$	$\tilde{\mathcal{O}}(m^2\sqrt{k})$?	

Assume that $n = \left\lfloor \frac{3m}{2} \right\rfloor$, otherwise solve $\mathcal{O}(n/m)$ instances of size $\left\lfloor \frac{3m}{2} \right\rfloor$ (in 1D), or $\mathcal{O}(n^2/m^2)$ instances of size $\left|\frac{3m}{2}\right| \times \left|\frac{3m}{2}\right|$ (in 2D).

		1D time	2D time	
exact PM	[Knuth, Morris, Pratt 77]	$\mathcal{O}(m)$	${\cal O}(m^2)$	[Bird 77]
∞ -mismatch	[Fischer, Paterson 74]	$ ilde{\mathcal{O}}(m \cdot \Sigma)$	$ ilde{\mathcal{O}}(m^2 \cdot \Sigma)$	[Fischer, Paterson 74]
k-mismatch	[Landau, Vishkin 86]	$\mathcal{O}(mk)$	$\mathcal{O}(m^2k)$	[Amir, Landau 91]
	[Amir, Lewenstein, Porat 04]	$ ilde{\mathcal{O}}(m\sqrt{k})$	$\tilde{\mathcal{O}}(m^2\sqrt{k})$?	
	[Clifford et al. 16]	$\tilde{\mathcal{O}}(m+k^2)$	$\tilde{\mathcal{O}}(m^2 + k^2)$?	

		1D time	2D time	
exact PM	[Knuth, Morris, Pratt 77]	$\mathcal{O}(m)$	${\cal O}(m^2)$	[Bird 77]
∞ -mismatch	[Fischer, Paterson 74]	$ ilde{\mathcal{O}}(m \cdot \Sigma)$	$ ilde{\mathcal{O}}(m^2 \cdot \Sigma)$	[Fischer, Paterson 74]
k-mismatch	[Landau, Vishkin 86]	$\mathcal{O}(mk)$	$\mathcal{O}(m^2k)$	[Amir, Landau 91]
	[Amir, Lewenstein, Porat 04]	$ ilde{\mathcal{O}}(m\sqrt{k})$	$\tilde{\mathcal{O}}(m^2\sqrt{k})$?	
	[Clifford et al. 16]	$\tilde{\mathcal{O}}(m+k^2)$	$\tilde{\mathcal{O}}(m^2 + k^2)$?	
	[Gawrychowski, Uznanski 18]	$\tilde{\mathcal{O}}(m+k\sqrt{m})$	$\tilde{\mathcal{O}}(m^2 + km)$,

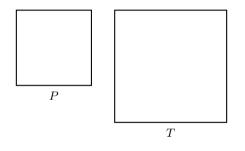
.

Assume that $n = \lfloor \frac{3m}{2} \rfloor$, otherwise solve $\mathcal{O}(n/m)$ instances of size $\lfloor \frac{3m}{2} \rfloor$ (in 1D), or $\mathcal{O}(n^2/m^2)$ instances of size $\lfloor \frac{3m}{2} \rfloor \times \lfloor \frac{3m}{2} \rfloor$ (in 2D).

		1D time	2D time	
exact PM	[Knuth, Morris, Pratt 77]	$\mathcal{O}(m)$	${\cal O}(m^2)$	[Bird 77]
∞ -mismatch	[Fischer, Paterson 74]	$ ilde{\mathcal{O}}(m \cdot \Sigma)$	$ ilde{\mathcal{O}}(m^2 \cdot \Sigma)$	[Fischer, Paterson 74]
k-mismatch	[Landau, Vishkin 86]	$\mathcal{O}(mk)$	$\mathcal{O}(m^2k)$	[Amir, Landau 91]
	[Amir, Lewenstein, Porat 04]	$ ilde{\mathcal{O}}(m\sqrt{k})$	$\tilde{\mathcal{O}}(m^2\sqrt{k})$?	~ 0 - 5/4 · ·
	[Clifford et al. 16]	$\tilde{\mathcal{O}}(m+k^2)$	$\tilde{\mathcal{O}}(m^2 + k^2)$?	$ ilde{\mathcal{O}}(m^2 + k^{5/4}m)$
	[Gawrychowski, Uznanski 18]	$\tilde{\mathcal{O}}(m + k\sqrt{m})$	$\tilde{\mathcal{O}}(m^2 + km)$?

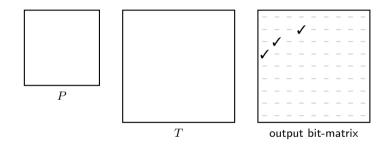
i.

…is easy! Adapt Karloff's algorithm to 2D and compute the following in $ilde{\mathcal{O}}(m^2)$ time:



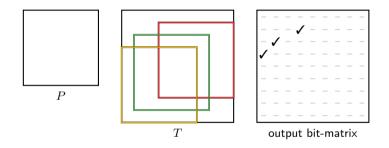
 \implies From now on, consider set C of candidate alignments (= marked positions).

…is easy! Adapt Karloff's algorithm to 2D and compute the following in $ilde{\mathcal{O}}(m^2)$ time:

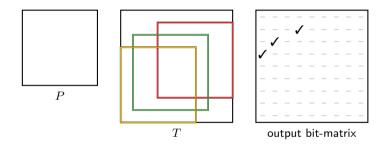


 \implies From now on, consider set C of candidate alignments (= marked positions).

…is easy! Adapt Karloff's algorithm to 2D and compute the following in $ilde{\mathcal{O}}(m^2)$ time:

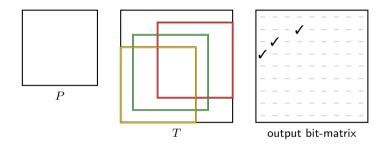


…is easy! Adapt Karloff's algorithm to 2D and compute the following in $ilde{\mathcal{O}}(m^2)$ time:



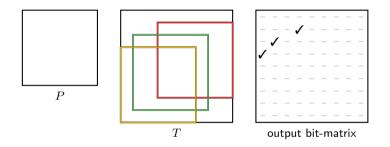
every k-mismatch occurrence is marked

…is easy! Adapt Karloff's algorithm to 2D and compute the following in $ilde{\mathcal{O}}(m^2)$ time:



- every k-mismatch occurrence is marked
- every marked position is a 2k-mismatch occurrence

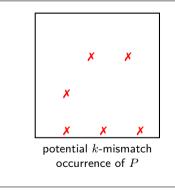
…is easy! Adapt Karloff's algorithm to 2D and compute the following in $ilde{\mathcal{O}}(m^2)$ time:



- every k-mismatch occurrence is marked
- every marked position is a 2k-mismatch occurrence

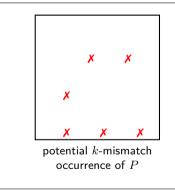
 \implies From now on, consider set C of candidate alignments (= marked positions).

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



For a given candidate alignment, count up to k mismatches in $\mathcal{O}(k)$ time:

(use simple reduction to 1D and standard data structures like suffix tree)

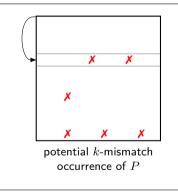


2D "kangaroo jumping":

 \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in $\mathcal{O}(k)$ time:

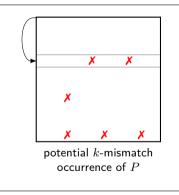
(use simple reduction to 1D and standard data structures like suffix tree)



2D "kangaroo jumping":

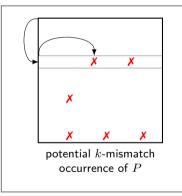
 \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



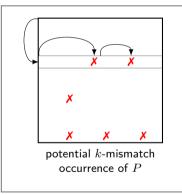
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



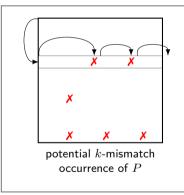
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



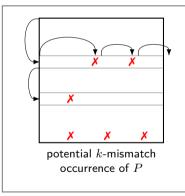
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



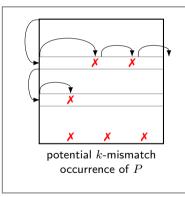
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



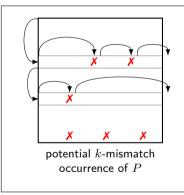
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



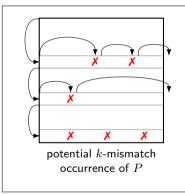
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



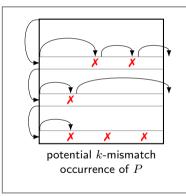
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



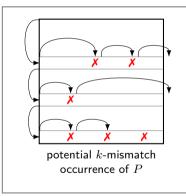
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



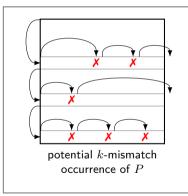
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



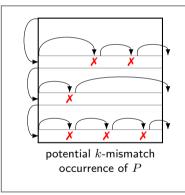
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



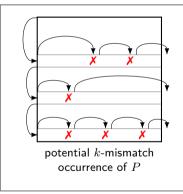
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



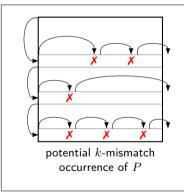
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



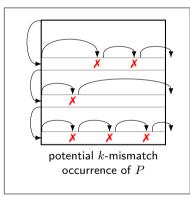
- jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time
- at most $\mathcal{O}(k)$ steps due to previous filtering

For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)



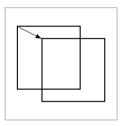
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time
- at most $\mathcal{O}(k)$ steps due to previous filtering
- \implies run for all candidate alignment in $\mathcal{O}(|\mathcal{C}|\cdot k)$ time

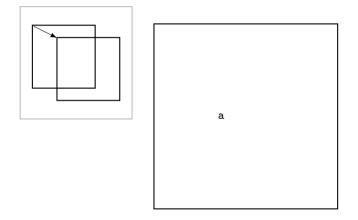
For a given candidate alignment, count up to k mismatches in O(k) time: (use simple reduction to 1D and standard data structures like suffix tree)

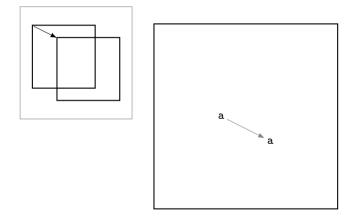


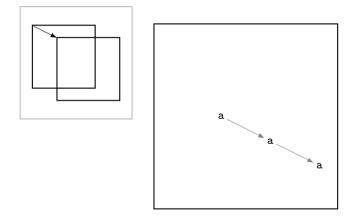
- \blacksquare jump to next row that contains a mismatch in $\mathcal{O}(1)$ time
- \blacksquare jump to next mismatch within row in $\mathcal{O}(1)$ time
- at most $\mathcal{O}(k)$ steps due to previous filtering
- \implies run for all candidate alignment in $\mathcal{O}(|\mathcal{C}|\cdot k)$ time

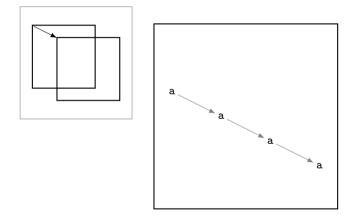
$$\implies$$
 if $|\mathcal{C}| = \mathcal{O}(m^2/k + m)$, then overall $\mathcal{O}(m^2 + km)$ time

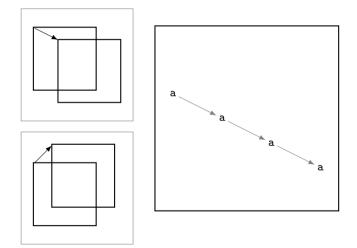


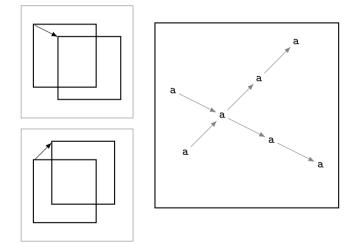


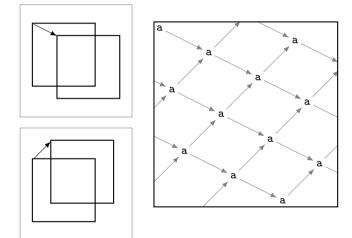




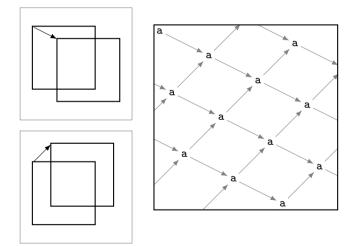






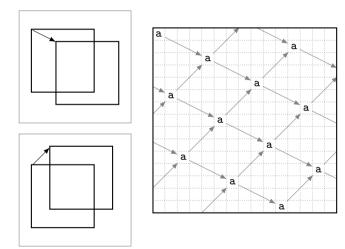


We're good unless $|\mathcal{C}| = \Omega(m^2/k + m)$. For now, assume that there are no mismatches.



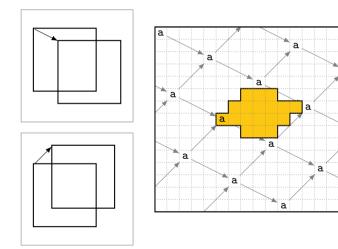
 if self-overlaps with no mismatches, then pattern is repeating "diamond"

We're good unless $|\mathcal{C}| = \Omega(m^2/k + m)$. For now, assume that there are no mismatches.

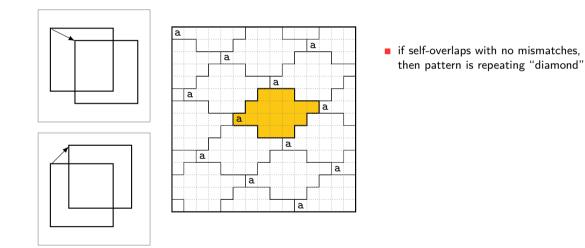


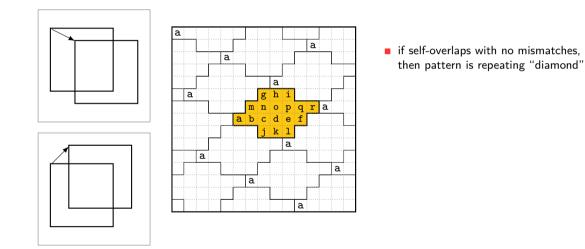
 if self-overlaps with no mismatches, then pattern is repeating "diamond"

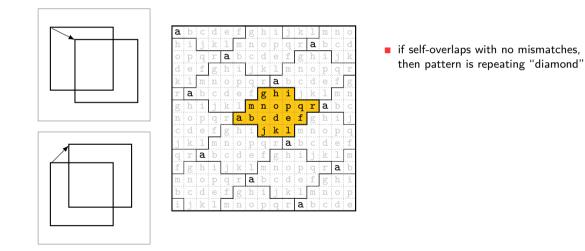
We're good unless $|\mathcal{C}| = \Omega(m^2/k + m)$. For now, assume that there are no mismatches.

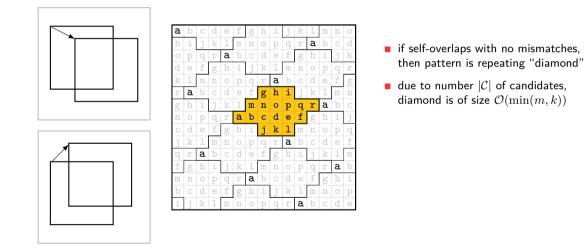


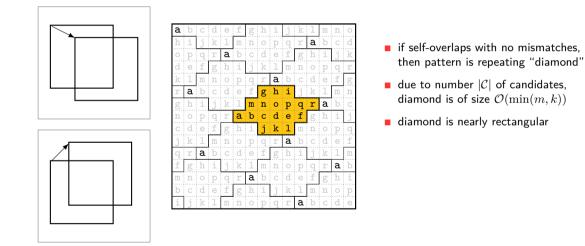
 if self-overlaps with no mismatches, then pattern is repeating "diamond"

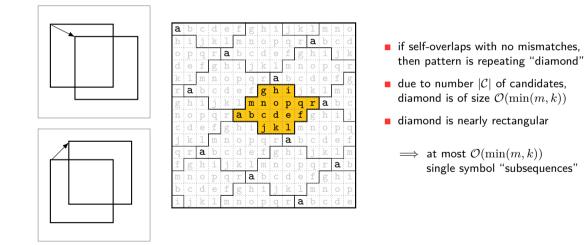


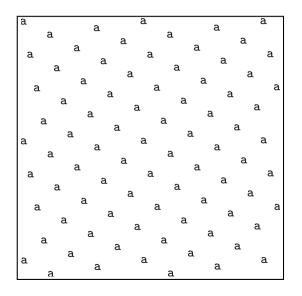


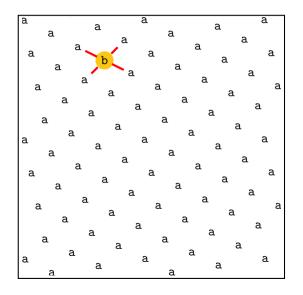


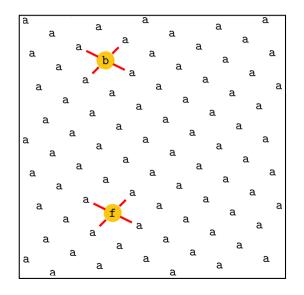


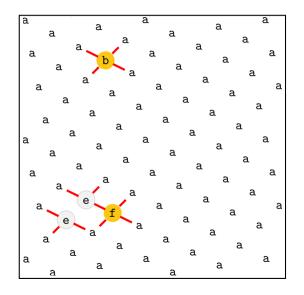


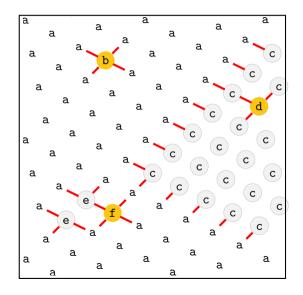




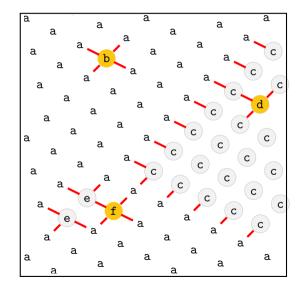




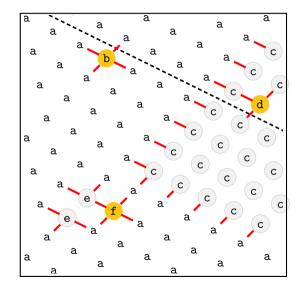




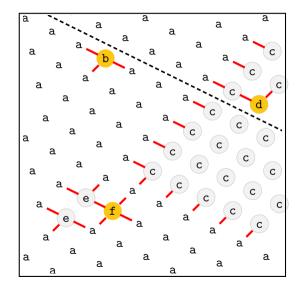
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



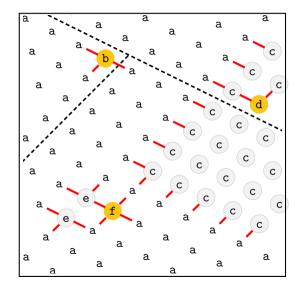
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



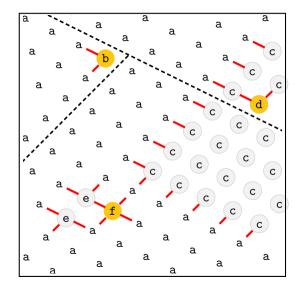
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



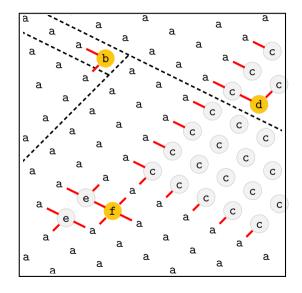
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



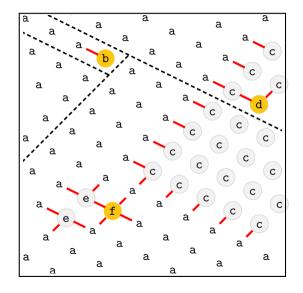
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



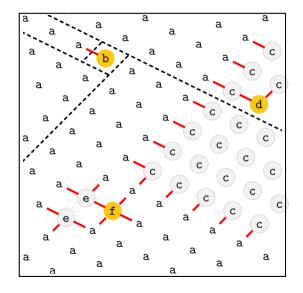
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



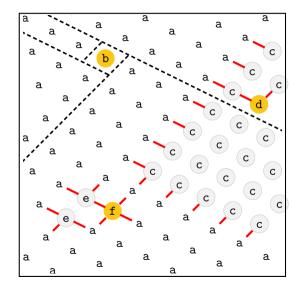
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



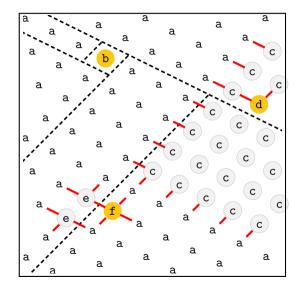
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



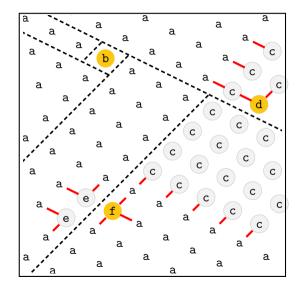
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



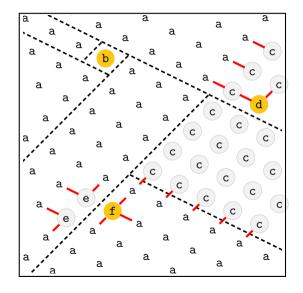
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



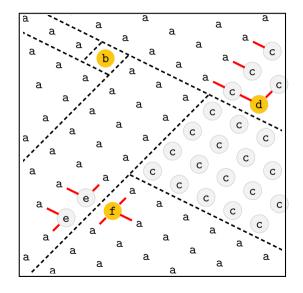
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



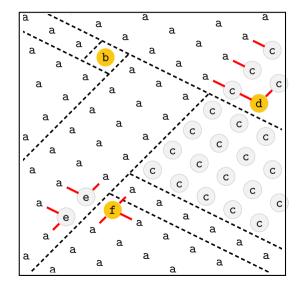
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



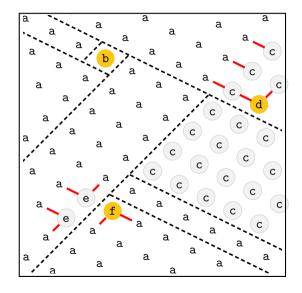
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



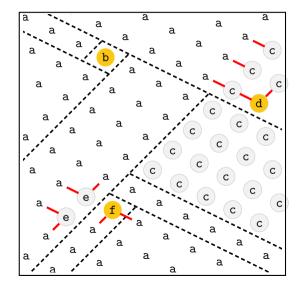
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



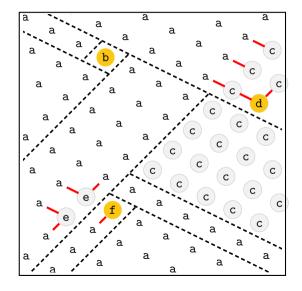
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



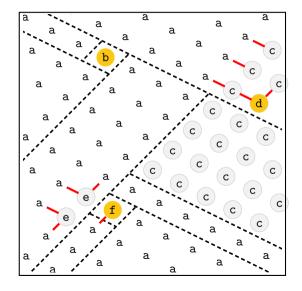
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



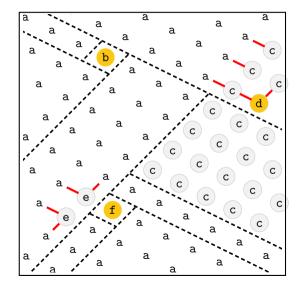
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



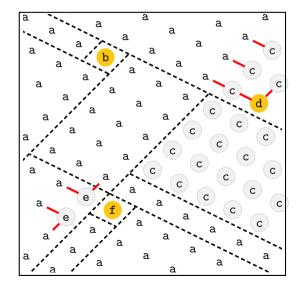
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



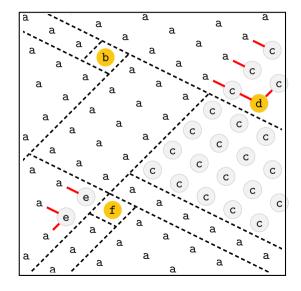
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



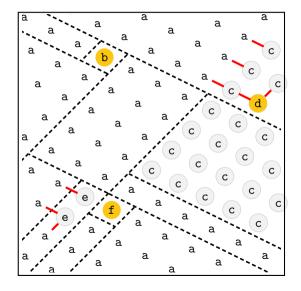
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



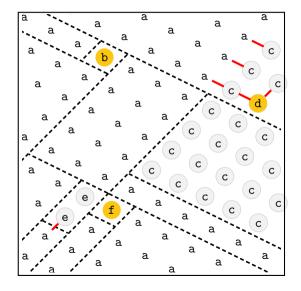
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



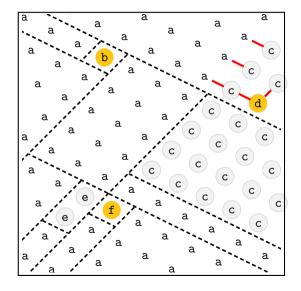
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



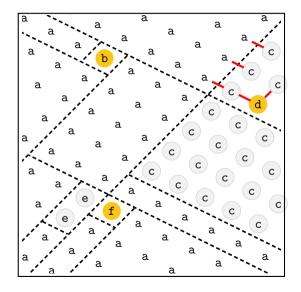
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



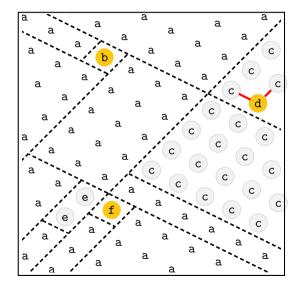
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



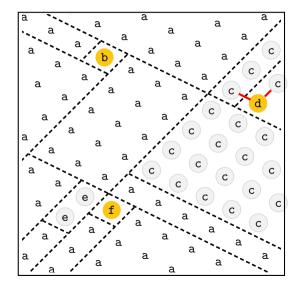
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



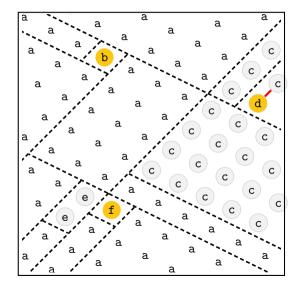
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



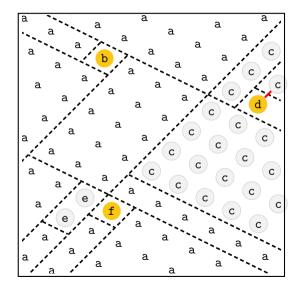
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



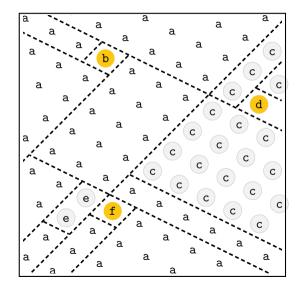
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)



- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)

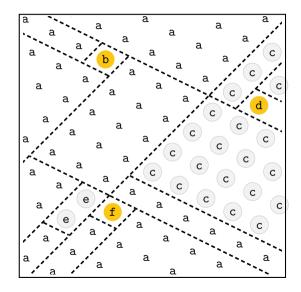


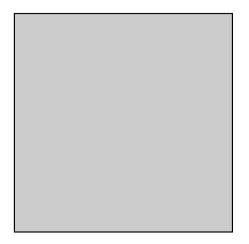
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)

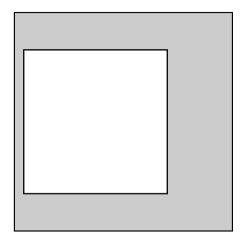


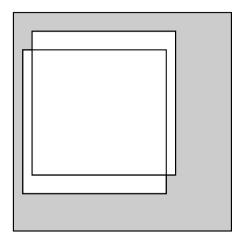
Splitting pattern subsequences

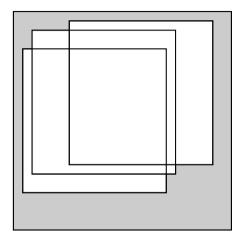
- diamond leads to $O(\min(m,k))$ subsequences
- O(k) mismatches of adjacent symbols (with respect to subsequences)
- $\implies \mathcal{O}(k) \text{ single symbol subsequences,} \\ \text{each of which is intersection} \\ \text{of rectangle and parallelogram} \\$

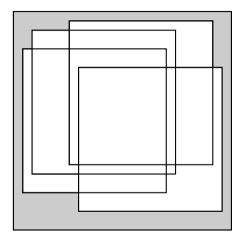


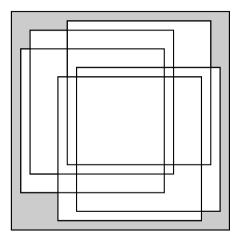


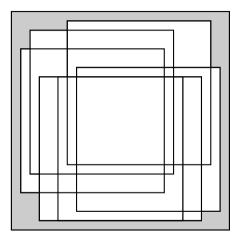


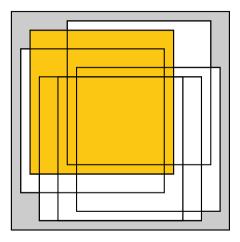


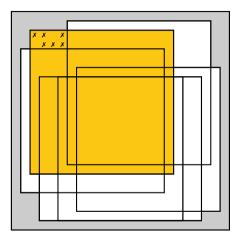




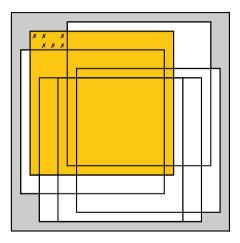




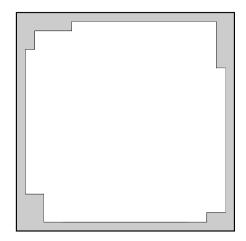




- ideally also partition text into
 \$\mathcal{O}(k)\$ single symbol subsequences
- but this is not always possible

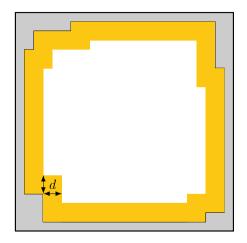


- ideally also partition text into $\mathcal{O}(k)$ single symbol subsequences
- but this is not always possible



- ideally also partition text into $\mathcal{O}(k)$ single symbol subsequences
- but this is not always possible

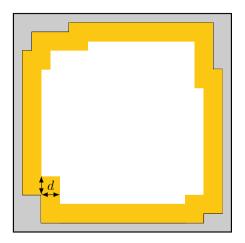
Instead: *d*-peripheral string



- ideally also partition text into
 \$\mathcal{O}(k)\$ single symbol subsequences
- but this is not always possible

Instead: *d*-peripheral string

 \blacksquare count mismatches in $\mathcal{O}(m^2+md\sqrt{k})$ time

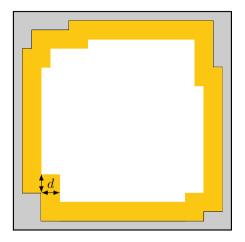


- ideally also partition text into
 \$\mathcal{O}(k)\$ single symbol subsequences
- but this is not always possible

Instead: *d*-peripheral string

 \blacksquare count mismatches in $\mathcal{O}(m^2+md\sqrt{k})$ time

and $\mathcal{O}(mk/d)$ single symbol subsequences



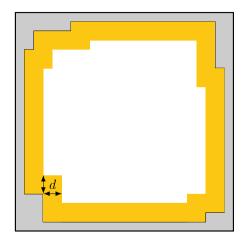
- ideally also partition text into
 \$\mathcal{O}(k)\$ single symbol subsequences
- but this is not always possible

Instead: *d*-peripheral string

 \blacksquare count mismatches in $\mathcal{O}(m^2+md\sqrt{k})$ time

and $\mathcal{O}(mk/d)$ single symbol subsequences

 \blacksquare count mismatches in $\mathcal{O}(m^2+mk^2/d)$ time



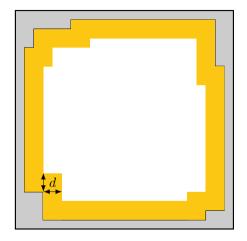
- ideally also partition text into
 \$\mathcal{O}(k)\$ single symbol subsequences
- but this is not always possible

Instead: *d*-peripheral string

 \blacksquare count mismatches in $\mathcal{O}(m^2+md\sqrt{k})$ time

and $\mathcal{O}(mk/d)$ single symbol subsequences $\label{eq:count} \mbox{ out mismatches in } \mathcal{O}(m^2+mk^2/d) \mbox{ time }$

 \Rightarrow use $d=\Theta(k^{3/4})$ for $\mathcal{O}(m^2+mk^{5/4})$ time



 \blacksquare 2D pattern matching with up to k mismatches in $\mathcal{O}(m^2+mk^{5/4})$ time

- \blacksquare 2D pattern matching with up to k mismatches in $\mathcal{O}(m^2+mk^{5/4})$ time
- many k-mismatch occurrences imply strong 2D periodicity

- \blacksquare 2D pattern matching with up to k mismatches in $\mathcal{O}(m^2+mk^{5/4})$ time
- many k-mismatch occurrences imply strong 2D periodicity

Open questions:

- 2D pattern matching with up to k mismatches in $\mathcal{O}(m^2+mk^{5/4})$ time
- many k-mismatch occurrences imply strong 2D periodicity

Open questions:

• Can we get $\mathcal{O}(m^2 + mk)$ time?

- 2D pattern matching with up to k mismatches in $\mathcal{O}(m^2+mk^{5/4})$ time
- many k-mismatch occurrences imply strong 2D periodicity

Open questions:

- Can we get $\mathcal{O}(m^2 + mk)$ time?
- Other notions of approximate occurrences (e.g., edit distance)?

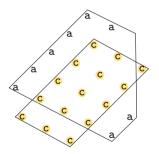
- 2D pattern matching with up to k mismatches in $\mathcal{O}(m^2+mk^{5/4})$ time
- many k-mismatch occurrences imply strong 2D periodicity

Open questions:

- Can we get $\mathcal{O}(m^2 + mk)$ time?
- Other notions of approximate occurrences (e.g., edit distance)?
- Lower bounds?

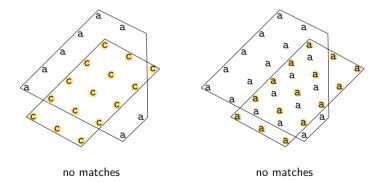
compute, for each candidate alignment in C, the aligned matches between each pattern subsequence and each text subsequence

compute, for each candidate alignment in C, the aligned matches between each pattern subsequence and each text subsequence



no matches

compute, for each candidate alignment in C, the aligned matches between each pattern subsequence and each text subsequence



compute, for each candidate alignment in C, the aligned matches between each pattern subsequence and each text subsequence

