Faster 2D Pattern Matching With k Mismatches

Jonas Ellert, Pawet Gawrychowski, Adam Goérkiewicz, Tatiana Starikovskaya

June 2025 CAALM

Pattern matching with mismatches

1D pattern: 1D text:

abcab ababcabcabbabcaba

Pattern matching with mismatches

1D pattern: 1D text:
abcab ab@bclabcablblabcabla

Pattern matching with mismatches

1D pattern: 1D text:
abcab ab@bclabcablblabcabla

v v v

Pattern matching with mismatches

1D pattern: 1D text:
abcab ab@bclabcablblabcabla

v Ve v
2D pattern: 2D text:
abc ab
dea eabc
fhd ahdea
fhd
abc abc
deabc d a
fhdea fhd
fhd

Pattern matching with mismatches

1D pattern: 1D text:
abcab ab@bclabcablblabcabla

v v v

2D pattern: 2D text:

Qo
5o o
[T]

Pattern matching with mismatches

1D pattern: 1D text:
abcab ab@bclabcablblabcabla

v v v

2D pattern: 2D text:

Qo
5o o
[T]

Pattern matching with mismatches

1D pattern: 1D text:
abcab ab@bclabcablblabcabla

v v v

2D pattern: 2D text:

Qo
5o o
[T]

What if we allow
up to kK mismatches?

for example, k£ = 3 mismatches

Pattern matching with mismatches

1D pattern: 1D text:

What if we allow
up to kK mismatches?

abcab

for example, k£ = 3 mismatches

2D pattern:

Qo
5o o
[T]

Pattern matching with mismatches

1D pattern: 1D text:

What if we allow
up to kK mismatches?

abcab

for example, k£ = 3 mismatches

2D pattern:

Qo
5o o
[T]

Pattern matching with mismatches

1D pattern: 1D text:

What if we allow
up to kK mismatches?

abcab

for example, k£ = 3 mismatches

2D pattern:

Qo
5o o
[T]

Pattern matching with mismatches

1D pattern: 1D text:

What if we allow
up to kK mismatches?

abcab

for example, k£ = 3 mismatches

2D pattern:

Qo
5o o
[T]

Pattern matching with mismatches

1D pattern: 1D text:

What if we allow
up to kK mismatches?

abcab

for example, k£ = 3 mismatches

2D pattern:

Qo
5o o
[T]

Pattern matching with mismatches

1D pattern: 1D text:

What if we allow
up to kK mismatches?

abcab

30 0 1 0
for example, k£ = 3 mismatches
2D pattern: 2D text:
@b 2z

Qo
5o o
[T]

abc abc V
defal]bcl |dz a v
f hidle a fhd

fhd

Pattern matching with mismatches

1D pattern: 1D text:

What if we allow
up to kK mismatches?

abcab

30 0 1 0
for example, k£ = 3 mismatches
2D pattern: 2D text:
abc abz 3
dea z efa|lb c 0
fhd a hlde a
fhd

abc abc 0 1

d efa|lb c dza 0

f hidle a|-If h d

fhd

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [2] (in 2D).

3m

Assume that n = L 5

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [2] (in 2D).

3m

Assume that n = L 5

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [2] (in 2D).

3m

Assume that n = L 5

blocks of size

2] < %]

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [2] (in 2D).

3m

Assume that n = L 5

blocks of size

2] < %]

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [2] (in 2D).

3m

Assume that n = L 5

blocks of size

2] < %]

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [2] (in 2D).

3m

Assume that n = L 5

blocks of size

2] < %]

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [2] (in 2D).

3m

Assume that n = L 5

blocks of size

2] < %]

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [32| (in 2D).

3m

Assume that n = L 5

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [32| (in 2D).

3m

Assume that n = L 5

‘ 1D time ‘ 2D time

exact PM ‘ [Knuth, Morris, Pratt 77] O(m) ‘ O(m?) [Bird 77]

Pattern matching with mismatches

J, otherwise solve O(n/m) instances of size P—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [32| (in 2D).

3m

Assume that n = L 5

1D time 2D time

exact PM [Knuth, Morris, Pratt 77] O(m) O(m?) [Bird 77]

oo-mismatch [Fischer, Paterson 74] O(m - |X)) O(m?-|Z|) [Fischer, Paterson 74]

Pattern matching with mismatches

3m

Assume that n = L 5

3

J, otherwise solve O(n/m) instances of size L—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [32| (in 2D).

1D time 2D time
exact PM [Knuth, Morris, Pratt 77] O(m) O(m?) [Bird 77]
oo-mismatch [Fischer, Paterson 74] O(m - |X)) O(m?-|Z|) [Fischer, Paterson 74]
k-mismatch [Landau, Vishkin 86] ~ O(mk) O(m?k) [Amir, Landau 91]

Pattern matching with mismatches

3m | (in 1D),
or O(n®/m?) instances of size | 32 | x [32| (in 2D).

Assume that n = L%J otherwise solve O(n/m) instances of size L

1D time 2D time
exact PM [Knuth, Morris, Pratt 77] O(m) O(m2) [Bird 77]
oco-mismatch [Fischer, Paterson 74] O(m - |3|) O(m? - |Z|) [Fischer, Paterson 74]
k-mismatch [Landau, Vishkin 86] O(mk) O(m?k) [Amir, Landau 91]
[Amir, Lewenstein, Porat 04] O(mvk) O(m>*Vk)?

Pattern matching with mismatches

3m

Assume that n = L 5

3

J, otherwise solve O(n/m) instances of size L—J (in 1D),

2
or O(n®/m?) instances of size | 32 | x [32| (in 2D).

1D time 2D time
exact PM [Knuth, Morris, Pratt 77] O(m) O(m?) [Bird 77]
oo-mismatch [Fischer, Paterson 74] O(m - |X)) O(m?-|Z|) [Fischer, Paterson 74]
k-mismatch [Landau, Vishkin 86] ~ O(mk) O(m?k) [Amir, Landau 91]
[Amir, Lewenstein, Porat 04] (’j(m\/E) CN(mQ'\ﬁ)?
[Clifford et al. 16] O(m + k?) O(m? + k*)?

Pattern matching with mismatches

Assume that n = LS—WJ otherwise solve O(n/m) instances of size L3”LJ (in 1D),

2

2
or O(n®/m?) instances of size | 32| x |

37’"J (in 2D).

1D time 2D time
exact PM [Knuth, Morris, Pratt 77] O(m) O(m2) [Bird 77]
oco-mismatch [Fischer, Paterson 74] O(m - |3|) O(m? - |Z|) [Fischer, Paterson 74]
k-mismatch [Landau, Vishkin 86] ~ O(mk) O(m?k) [Amir, Landau 91]
[Amir, Lewenstein, Porat 04] (’j(m\/E) @(mz\ﬁ)?
[Clifford et al. 16] O(m + k?) O(m? + k*)?
[Gawrychowski, Uznanski 18] O(m + k/m) | O(m? + km)?

Pattern matching with mismatches

Assume that n = LS—WJ otherwise solve O(n/m) instances of size L3”LJ (in 1D),

2

2
or O(n®/m?) instances of size | 32| x |

37’"J (in 2D).

1D time 2D time
exact PM [Knuth, Morris, Pratt 77] O(m) O(m2) [Bird 77]
oco-mismatch [Fischer, Paterson 74] O(m - |3|) O(m? - |Z|) [Fischer, Paterson 74]
k-mismatch [Landau, Vishkin 86] ~ O(mk) O(m?k) [Amir, Landau 91]
[Amir, Lewenstein, Porat 04] (’j(m\/E) @(mz\ﬁ)?
[Clifford et al. 16] O(m + k2) O(m? + k2)? O(m” + k*/*m)
[Gawrychowski, Uznanski 18] O(m + k/m) | O(m? + km)? <~_/

Almost solving the problem...

...is easy! Adapt Karloff's algorithm to 2D and compute the following in @(m2) time:

= From now on, consider set C of candidate alignments (= marked positions).

Almost solving the problem...

...is easy! Adapt Karloff's algorithm to 2D and compute the following in @(m2) time:

T output bit-matrix

= From now on, consider set C of candidate alignments (= marked positions).

Almost solving the problem...

...is easy! Adapt Karloff’s algorithm to 2D and compute the following in O(m?) time:

T output bit-matrix

Almost solving the problem...

...is easy! Adapt Karloff’s algorithm to 2D and compute the following in O(m?) time:

T output bit-matrix

m every k-mismatch occurrence is marked

Almost solving the problem...

...is easy! Adapt Karloff’s algorithm to 2D and compute the following in O(m?) time:

T output bit-matrix

m every k-mismatch occurrence is marked

m every marked position is a 2k-mismatch occurrence

Almost solving the problem...

...is easy! Adapt Karloff’s algorithm to 2D and compute the following in O(m?) time:

T output bit-matrix

m every k-mismatch occurrence is marked

m every marked position is a 2k-mismatch occurrence

= From now on, consider set C of candidate alignments (= marked positions).

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

X X X

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:

B jump to next row that contains a mismatch in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:

B jump to next row that contains a mismatch in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:
B jump to next row that contains a mismatch in O(1) time

B jump to next mismatch within row in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:
B jump to next row that contains a mismatch in O(1) time

B jump to next mismatch within row in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:
B jump to next row that contains a mismatch in O(1) time

B jump to next mismatch within row in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

[TaN

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:
B jump to next row that contains a mismatch in O(1) time

B jump to next mismatch within row in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:
th\v B jump to next row that contains a mismatch in O(1) time
(B jump to next mismatch within row in O(1) time
X
X X X

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:
th\v B jump to next row that contains a mismatch in O(1) time
(B jump to next mismatch within row in O(1) time
X
X X X

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:
th\v B jump to next row that contains a mismatch in O(1) time
(/\\v B jump to next mismatch within row in O(1) time
X
X X X

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

¥ O\Y)
>

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:
B jump to next row that contains a mismatch in O(1) time

B jump to next mismatch within row in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

¥ Y
>

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:
B jump to next row that contains a mismatch in O(1) time

B jump to next mismatch within row in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

¥ Y
>

X

X

X

potential k-mismatch
occurrence of P

T

2D “kangaroo jumping”:
B jump to next row that contains a mismatch in O(1) time

B jump to next mismatch within row in O(1) time

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:
th\v B jump to next row that contains a mismatch in O(1) time
(/\\v B jump to next mismatch within row in O(1) time
X
(N Y
X X X

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:
th\v B jump to next row that contains a mismatch in O(1) time
(/\\v B jump to next mismatch within row in O(1) time
X
(YO Yy
X X X

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:

X X B jump to next row that contains a mismatch in O(1) time

/\\v B jump to next mismatch within row in O(1) time

m at most O(k) steps due to previous filtering

¥ Y
>

CYC Yy

X X X

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:

X X B jump to next row that contains a mismatch in O(1) time

/\\v B jump to next mismatch within row in O(1) time

m at most O(k) steps due to previous filtering

¥ Y
>

er—\}({—‘ = run for all candidate alignment in O(|C| - k) time

potential k-mismatch
occurrence of P

T

Verifying candidate alignments

For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)

2D “kangaroo jumping”:
CNC Ty

X X B jump to next row that contains a mismatch in O(1) time
/\ B jump to next mismatch within row in O(1) time
X v m at most O(k) steps due to previous filtering
(er—\}({—‘ = run for all candidate alignment in O(|C| - k) time
potential k-mismatch — if|C| = O(m?/k +m), then overall O(m? + km) time
occurrence of P

T

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,

then pattern is repeating “diamond”

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,

then pattern is repeating “diamond”

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

m due to number |C| of candidates,
diamond is of size O(min(m, k))

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

m due to number |C| of candidates,
diamond is of size O(min(m, k))

m diamond is nearly rectangular

Many candidates imply periodicity

We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

m due to number |C| of candidates,
diamond is of size O(min(m, k))

m diamond is nearly rectangular

= at most O(min(m, k))
single symbol “subsequences”

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

[oV]

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

»

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

[V

(W)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

[V

(W)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

(W)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

(W)

)

)

O

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

(W)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

o a
a ~~~~ a
~N oy
/b /7~~~
a L’ a
4
I' a
¢,
t' a a
a
a
a
a ~N
a /
4 a
e\f/
\a/ \a
a
a

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

[V

)

)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

= O(k) single symbol subsequences,

each of which is intersection
of rectangle and parallelogram

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

> X
>

> X

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

= but this is not always possible

> X
>

> X

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

m but this is not always possible

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

m but this is not always possible

Instead: d-peripheral string

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

m but this is not always possible

Instead: d-peripheral string
= count mismatches in O(m? + mdv'k) time

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

m but this is not always possible

Instead: d-peripheral string
= count mismatches in O(m? + mdv'k) time

and O(mk/d) single symbol subsequences

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

m but this is not always possible

Instead: d-peripheral string
= count mismatches in O(m? + mdv'k) time

and O(mk/d) single symbol subsequences

= count mismatches in O(m? + mk?/d) time

10

Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

m but this is not always possible

Instead: d-peripheral string
= count mismatches in O(m? + mdv'k) time

and O(mk/d) single symbol subsequences

= count mismatches in O(m? + mk?/d) time

= use d = O(k3/*) for O(m? + mk®/*) time

10

Summary

11

Summary

= 2D pattern matching with up to k mismatches in O(m? 4+ mk>/*) time

11

Summary

= 2D pattern matching with up to k mismatches in O(m? 4+ mk>/*) time

= many k-mismatch occurrences imply strong 2D periodicity

11

Summary

= 2D pattern matching with up to k mismatches in O(m? 4+ mk>/*) time

= many k-mismatch occurrences imply strong 2D periodicity

Open questions:

11

Summary
= 2D pattern matching with up to k mismatches in O(m? 4+ mk>/*) time
= many k-mismatch occurrences imply strong 2D periodicity

Open questions:
= Can we get O(m? + mk) time?

11

Summary

= 2D pattern matching with up to k mismatches in O(m? 4+ mk>/*) time

= many k-mismatch occurrences imply strong 2D periodicity

Open questions:
= Can we get O(m? + mk) time?
m Other notions of approximate occurrences (e.g., edit distance)?

11

Summary

= 2D pattern matching with up to k mismatches in O(m? 4+ mk>/*) time

= many k-mismatch occurrences imply strong 2D periodicity

Open questions:
= Can we get O(m? + mk) time?
m Other notions of approximate occurrences (e.g., edit distance)?
= Lower bounds?

11

Matching subsequences

m compute, for each candidate alignment in C, the aligned matches between each pattern
subsequence and each text subsequence

12

Matching subsequences

m compute, for each candidate alignment in C, the aligned matches between each pattern
subsequence and each text subsequence

no matches

12

Matching subsequences

m compute, for each candidate alignment in C, the aligned matches between each pattern
subsequence and each text subsequence

no matches no matches

12

Matching subsequences

m compute, for each candidate alignment in C, the aligned matches between each pattern
subsequence and each text subsequence

no matches no matches matches = intersection

12

