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For a given candidate alignment, count up to k£ mismatches in O(k) time:

(use simple reduction to 1D and standard data structures like suffix tree)
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We're good unless |C| = Q(m?/k +m). For now, assume that there are no mismatches.

m if self-overlaps with no mismatches,
then pattern is repeating “diamond”

m due to number |C| of candidates,
diamond is of size O(min(m, k))

m diamond is nearly rectangular

= at most O(min(m, k))
single symbol “subsequences”
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Splitting pattern subsequences

m diamond leads to
O(min(m, k)) subsequences

m O(k) mismatches of adjacent symbols
(with respect to subsequences)

= O(k) single symbol subsequences,

each of which is intersection
of rectangle and parallelogram
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Partitioning the text

m ideally also partition text into
O(k) single symbol subsequences

m but this is not always possible

Instead: d-peripheral string
= count mismatches in O(m? + mdv'k) time

and O(mk/d) single symbol subsequences

= count mismatches in O(m? + mk?/d) time

= use d = O(k3/*) for O(m? + mk®/*) time
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Summary

= 2D pattern matching with up to k mismatches in O(m? 4+ mk>/*) time

= many k-mismatch occurrences imply strong 2D periodicity

Open questions:
= Can we get O(m? + mk) time?
m Other notions of approximate occurrences (e.g., edit distance)?
= Lower bounds?
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Matching subsequences

m compute, for each candidate alignment in C, the aligned matches between each pattern
subsequence and each text subsequence

no matches no matches matches = intersection
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