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Quantified Boolean Formulas (QBF)

Proof complexity
▶ main objective: understand the size of proofs
▶ main framework: propositional logic

Why QBF proof complexity?
▶ Quantification is very natural.
▶ interesting theory evolving
▶ shows different effects from propositional proof complexity
▶ driven by and impact for QBF solving
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Interesting test case for algorithmic progress

SAT revolution

SAT NP main breakthrough late 1990s
QBF PSPACE industrial applicability now
DQBF NEXPTIME relatively early stage
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Proof complexity and an interesting discrepancy
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QBFs: our model

Quantified Boolean Formulas (QBF)
▶ we work with fully quantified prenex formulas, e.g.

∃x∀u∃t︸ ︷︷ ︸
quantifier prefix

(x ∨ u ∨ t) ∧ (¬x ∨ ¬u ∨ t) ∧ ¬t︸ ︷︷ ︸
CNF matrix

▶ Such QBFs are either true or false.
▶ We consider refutation calculi for false QBFs.
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Game semantics of QBFs

2-player game between ∃ and ∀
▶ following the prefix, set variables to 0/1
▶ ∀ wins if a clause gets falsified, otherwise ∃ wins.

▶ Example
▶ ∃ sets x = 1
▶ ∀ sets u = 1
▶ ∃ sets t = 1 and loses
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Strategy size
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A core QBF system: QU-Resolution

= Resolution + ∀-reduction [Kleine Büning et al. 95, V. Gelder 12]

Rules
▶ Resolution: x ∨ C ¬x ∨ D (C ∨ D is not tautological.)C ∨ D

▶ ∀-Reduction: C ∨ u (u universally quantified)C
C does not contain variables right of u in the quantifier prefix.

Example ∀u∃x u ∨ xu ∨ ¬x
u

⊥
∀u
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Important propositional proof systems

Truth table

Tree-Resolution

Resolution

Cutting PlanesAC0-Frege

Nullstellensatz

Polynomial Calculus

PCR

Frege

Extended Frege

optimal proof system?

not polynomially bounded
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From propositional proof systems to QBF

A general ∀red rule
▶ Fix a prenex QBF Φ.
▶ Let F (x⃗ , u) be a propositional line in a refutation of Φ,

where u is universal with innermost quant. level in F
F (x⃗ , u)
F (x⃗ , 0)

F (x⃗ , u)
(∀red)

F (x⃗ , 1)

QBF proof systems
For any ‘natural’ line-based propositional proof system P define
the QBF proof system P + ∀red by adding ∀red to the rules of P.

Proposition (B., Bonacina & Chew 16)
P + ∀red is sound and complete for QBF.
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QBF proof systems
For any ‘natural’ line-based propositional proof system P define
the QBF proof system P + ∀red by adding ∀red to the rules of P.

Remark
For P = Resolution this exactly yields QU-Resolution.
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Proof complexity of QU-Res

proof com-
plexity of QU-Res

QBF
families

equality

parity

KBKF

gadget
construc-

tion

lower
bound

techniques

game
tech-
niquescircuit

com-
plexity

unified
decision

lists

size/
cost/

capacity

This is a
wildcard.

feasible
interpo-
lation

Theorem (Size/Cost)
[Beyersdorff/Blinkhorn/Hinde 2019]

Let ϕ be a false QBF. Then QU-Res refutations of ϕ have size ≥ cost(ϕ).

nice, but
artificial

few & hand-
crafted

Problem: We only know
few hard QBFs
& most of them are
hand-crafted.
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Certificates for SAT/QBF solver runs

SAT solver on CNF F

SAT UNSAT

satisfying
assignment

for F

refutation
of F
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Strategy extraction in QBF

useful for solving
▶ certifies answers of solvers
▶ yields solutions

and useful in proof complexity
▶ Strategy extraction is efficient for many QBF proof systems,

including QU-Resolution.
▶ Complex strategies can imply lower bounds on proof size.

What does ‘complex’ mean?
▶ hard to compute
▶ large range
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The cost of strategies

Definition
▶ Fix a winning strategy S for a QBF Φ and consider the size of

its range (in each universal block).
▶ The cost of Φ is the minimum of this range size over all winning

strategies.

Intuition
▶ Strategies that require many responses of the universal player

(in one block) are costly.
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Example

Equality formulas

∃x1 · · · xn∀u1 · · · un∃t1 · · · tn( n∧
i=1

(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)
)

∧
( n∨

i=1
ti

)
.

▶ The only winning strategy for these formulas is ui = xi for
i = 1, . . . , n.

▶ The cost (=size of the range of the winning strategy) is 2n.
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Capacity

Capacity of lines and proofs
▶ Let L be a line in P + ∀red.
▶ The capacity is the number responses required per proof line.

Example
▶ Clauses have capacity 1 (require only one response).
▶ E.g. for ∃x∀u (x ∨ u) always answer u = 0.
▶ Resolution has capacity 1.
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Lower bounds via cost

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each P + ∀red proof π of a QBF ϕ we have

|π| ≥ cost(ϕ)
capacity(π) .

Example: Equality formulas in resolution
∃x1 · · · xn∀u1 · · · un∃t1 · · · tn
[
∧n

i=1(xi ∨ ui ∨ ¬ti) ∧ (¬xi ∨ ¬ui ∨ ¬ti)] ∧
∨n

i=1 ti
▶ cost = 2n

▶ capacity = 1
▶ ⇒ proofs in Res + ∀red are of size 2n.
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Lower bounds via cost

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each P + ∀red proof π of a QBF ϕ we have

|π| ≥ cost(ϕ)
capacity(π) .

Intuition on the proof
▶ cost counts the number of necessary responses of universal win-

ning strategies
▶ these can be extracted from the proof
▶ capacity gives an upper bound on how many responses can be

extracted per line
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Lower bounds via cost

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each P + ∀red proof π of a QBF ϕ we have

|π| ≥ cost(ϕ)
capacity(π) .

Remarks
▶ lower bound technique with semantic flavour
▶ works for all base systems P (under very mild assumptions)
▶ always produces ‘genuine’ QBF lower bounds on the number of

∀-reduction steps
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Lower bounds via cost

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each P + ∀red proof π of a QBF ϕ we have

|π| ≥ cost(ϕ)
capacity(π) .

Yields exponential-size lower bounds for
▶ resolution (capacity 1)
▶ cutting planes (capacity 1)
▶ polynomial calculus (capacity linear in the proof size)
▶ but not for Frege (capacity can be exponential)
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From computationally hard problems to hard QBFs

valid for all Σp
k -complete

problems:

Problem P is
Σp

k -complete Σp
k ̸= NP

any short QBF
encoding φP of P

φP is hard for QU (in
fact, all proof systems)

our approach, demonstrated on
selected Σp

k -complete problems:

Σp
k -complete

Problem P
with critical

instances

uncon-
ditional

a certain short QBF
encoding φP of P

φP is hard for QU

size/cost
technique

natural and
generic approach
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Situation in propositional logic

▶ no such generic approach known in propositional logic
▶ intense research, but only few results
▶ graph colouring:

▶ hard in resolution for random graphs with linearly many
edges [Beame/Gulberson/Mitchell/More 2005]

▶ hard on average for polynomial calculus and
Nullstellensatz
[Conneryd/de Rezende/Nordström 2023]

▶ clique:
▶ hard for tree-like resolution [B./Galesi/Lauria 2013]
▶ hard for regular resolution

[Atserias/Bonacina/de Rezende/Lauria/Nordström/Razborov 2021]
▶ major open problem for resolution

Olaf Beyersdorff (University of Jena) Computationally hard problems are hard for QBF proof systems too 19



From computationally hard problems to hard QBFs: Our
Approach

computationally hard problem
given: a (set of) mathematical structure(s) S
Question: Has S property P?

QBF formulation of the problem
construct a QBF which is true iff S
has property P

critical family
find a family of structures that only
just fail to have property P

hard QBF family
critical families result in QBFs with high cost
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Example: k-Radius

Definition
Given a directed graph G and an integer k.
k-Radius(G) asks, whether G has radius at most k.

a

b

c

d

e

f

g

h
k = 3
f is a 3-center
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Succinct representations (Galperin & Wigderson)

Definition
▶ directed graph G = (V , E ) with V = {0, 1}n

▶ circuit C with 2n input gates and one output gate
▶ C is a Galperin-Wigderson representation of G iff

C(x , y) = 1 ↔ (x , y) ∈ E for any x , y ∈ V .

It is possible to represent (certain) graphs with 2n vertices by
circuits of polynomial size in n.
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Example: Succinct k-Radius

Theorem [Hemaspaandra, Hemaspaandra, Tantau & Watanabe 2010]

Given a succinct representation C of a directed graph G ,
determining whether G has radius at most k is Σp

3-complete for
any fixed k ≥ 2.

Theorem [B. & Schleitzer AAAI’25]

▶ The natural QBF encoding of succinct k-radius is exponentially
hard for QU-Resolution.

▶ This also holds for the QBF versions of cutting planes and
polynomial calculus.
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QBF encoding of Succinct k-Radius

p0 p1 p2 p3 pk−1 pk
. . .

Pi = {pi
1, . . . , pi

log n} for i ∈ [0, k]

SRk(G) :=

∃P0∀Pk∃P1 . . . Pk−1

VTseitin ·

TTF (
∧

i∈[k]

( φequal(i − 1, i) ∨ φedge(i − 1, i) ) )
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Critical family for Succinct k-Radius: almost-k-center

a

b

c

d

e

f

g

h
k = 2
f is an almost-2-center
with corruptor a
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Critical family for Succinct k-Radius

v1
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v4
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. . .
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. . .

Lemma
The graph Gk

n constructed as described has radius > k and n
almost-k-centers with pairwise different corruptors for
n ≥ 2, k > 2.
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Gk
n is in fact a critical family
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Theorem
cost(SRk(Gk

n )) ≥ n for n ≥ 2, k > 2.

Corollary
SRk(Gk

n ) require QU-Res proofs of size at least n.
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Gk
n has logarithmic-size circuits

Output

j′ = j + 1

i = i ′

j = j′ + 1

j = 1

j′ = 3

i ̸= i ′

j = 3

j′ = 1

bi
n(

i)
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n(
i′ )
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n(
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Input

Indicator Nodes
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n
V

1
an

d
V

3
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A second example

Definition
A (k-)clique-colouring of a graph G is a k-colouring of G such that
there are no monochromatic maximal cliques.

k-Clique Colouring
Given a graph G and an integer k, is there a k-clique-colouring
for G?

Theorem [Marx 2011]

k-Clique Colouring is Σp
2-complete for any k ≥ 2.

Theorem [B. & Schleitzer 2025]

k-Clique Colouring is exponentially hard for QU-Resolution.
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Summary

▶ new method to obtain hard formulas
▶ hardness via an intuitive semantic argument, not using the

syntax of the encoding
▶ hardness results hold unconditionally
▶ high potential: we know a lot of computationally hard

problems
▶ yields many benchmarks for QBF solving
▶ can also construct QBFs of intermediate hardness
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