

On the Probabilistic and Statistical Verification of Infinite Markov Chains

Patricia Bouyer

LMF, Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Joint work with Benoît Barbot (LACL) and Serge Haddad (LMF)

Work partly supported by ANR projects MAVeriQ and BisoUS

General purpose

Design algorithms to estimate probabilities in some **infinite-state** Markov chains, **with guarantees**

General purpose

Design algorithms to estimate probabilities in some **infinite-state** Markov chains, **with guarantees**

Our contributions

- Review two existing approaches (approximation algorithm and estimation algorithm) and specify the required hypothesis for correctness
- Propose an approach based on importance sampling and abstraction to partly relax the hypothesis
- Analyze empirically the approaches

Discrete-time Markov chain (DTMC)

 $\mathscr{C} = (S, s_0, \delta)$ with S at most denumerable, $s_0 \in S$ and $\delta : S \to \text{Dist}(S)$

Discrete-time Markov chain (DTMC)

 $\mathscr{C} = (S, s_0, \delta)$ with S at most denumerable, $s_0 \in S$ and $\delta: S \to \mathrm{Dist}(S)$

Finite Markov chain

Discrete-time Markov chain (DTMC)

 $\mathscr{C} = (S, s_0, \delta)$ with S at most denumerable, $s_0 \in S$ and $\delta: S \to \mathrm{Dist}(S)$

3/4 1/4 1/4 1/4 ...

Countable Markov chain (random walk of parameter 1/4)

Discrete-time Markov chain (DTMC)

 $\mathscr{C} = (S, s_0, \delta)$ with S at most denumerable, $s_0 \in S$ and $\delta: S \to \mathrm{Dist}(S)$

+ effectivity conditions...

1/4

3/4

 S_2

*s*₁

3/4

1/4

3/4

Countable Markov chain (random walk of parameter 1/4)

Finite Markov chain

Queues

Probabilistic pushdown automata

$$A \xrightarrow{1} C \quad A \xrightarrow{n} BB \quad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \quad C \xrightarrow{1} C$$

Probabilistic pushdown automata

$$A \xrightarrow{1} C \quad A \xrightarrow{n} BB \quad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \quad C \xrightarrow{1} C$$
$$n \text{ is the height of the stack}$$

Probabilistic pushdown automata

$$A \xrightarrow{1} C \quad A \xrightarrow{n} BB \quad B \xrightarrow{5} \varepsilon$$
$$B \xrightarrow{n} AA \quad C \xrightarrow{1} C$$
$$n \text{ is the height of the stack}$$

Quantitative analysis of Markov chains

Quantitative analysis of Markov chains

Closed-form solution

- Random walk of parameter p > 1/2: $\mathbb{P}_{s_n}(\mathbf{F} \odot) = \kappa^n$, where $\kappa = \frac{1-p}{p}$
- Does not always exist

Quantitative analysis of Markov chains

Closed-form solution

- Random walk of parameter p > 1/2: $\mathbb{P}_{s_n}(\mathbf{F} \bigcirc) = \kappa^n$, where $\kappa = \frac{1-p}{1-p}$
- Does not always exist

Apply a numerical method [RKPN04]

$$x_{s} = \begin{cases} 1 & \text{if } s = \textcircled{o} \\ 0 & \text{if } s \notin \exists \mathbf{F} \textcircled{o} \\ \sum_{t} \mathbb{P}(s \to t) \cdot x_{t} & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{s_{0}}(\mathbf{F} \textcircled{o}) = 1/19$$

$$\mathbb{System must be finite}$$

$$\mathbb{P} \text{rone to numerical error}$$

Quantitative analysis of Markov chains

- System must be finite
- Prone to numerical error
- No general method exists for infinite Markov chains

Quantitative analysis of Markov chains

Closed-form solution

- Random walk of parameter p > 1/2: $\mathbb{P}_{s_n}(\mathbf{F} \bigcirc) = \kappa^n$, where $\kappa = \frac{1-p}{1-p}$
- Does not always exist

Apply a numerical method [RKPN04]

$$x_{s} = \begin{cases} 1 & \text{if } s = \textcircled{o} \\ 0 & \text{if } s \notin \exists F \textcircled{o} \\ \sum_{t} \mathbb{P}(s \to t) \cdot x_{t} & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{s_{0}}(F \textcircled{o}) = 1/19$$

$$\text{System must be finite}$$

$$\text{Prone to numerical error}$$

- No general method exists for infinite Markov chains
- Ad-hoc methods in specific classes

Quantitative analysis of Markov chains

Closed-form solution

- Random walk of parameter p > 1/2: $\mathbb{P}_{s_n}(\mathbf{F} \bigcirc) = \kappa^n$, where $\kappa = \frac{1-p}{1-p}$
- Does not always exist

Apply a numerical method [RKPN04]

$$x_{s} = \begin{cases} 1 & \text{if } s = \textcircled{o} \\ 0 & \text{if } s \notin \exists \mathbf{F} \textcircled{o} \\ \sum_{t} \mathbb{P}(s \to t) \cdot x_{t} & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{s_{0}}(\mathbf{F} \textcircled{o}) = 1/19$$

$$\text{System must be finite}$$

$$\text{Prone to numerical error}$$

- No general method exists for infinite Markov chains
- Ad-hoc methods in specific classes
- Specific approaches for decisive Markov chains

Decisiveness

A DTMC \mathscr{C} is decisive from *s* w.r.t. \bigcirc if $\mathbb{P}_{s}(\mathbf{F} \bigcirc \vee \mathbf{F} \textcircled{c}) = 1$

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

 Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:

$$\mathbf{P}(\mathbf{G}\neg \bigcirc) = \prod_{i\geq 1} p_i$$

- Decisive iff this product equals $\mathbf{0}$

- Examples of decisive Markov chains: finite Markov chains, probabilistic lossy channel systems, probabilistic VASS, noisy Turing machines, ...
- Example/counterexample:

- Recurrent random walk ($p \leq 1/2$): decisive
- Transient random walk (p > 1/2): not decisive

Deciding decisiveness?

Classes where decisiveness can be decided

- Probabilistic pushdown automata with constant weights [ABM07]
- Random walks with polynomial weights [FHY23]
- So-called probabilistic homogeneous one-counter machines with polynomial weights (this extends the model of quasi-birth death processes) [FHY23]

- Aim: compute probability of ${f F}$ 💛
- $\bullet \ \ \textcircled{\ } = \{s \in S \mid s \not\models \exists \mathbf{F} \textcircled{\ } \textcircled{\ } \}$

 $\bullet \ \ \textcircled{\ } = \{s \in S \mid s \not\models \exists \mathbf{F} \textcircled{\ } \textcircled{\ } \}$

Approximation scheme

Given $\varepsilon > 0$, for every n, compute:

$$\begin{cases} p_n^{\text{yes}} &= \mathbb{P}(\mathbf{F}_{\leq n} \heartsuit) \\ p_n^{\text{no}} &= \mathbb{P}(\mathbf{F}_{\leq n} \bigotimes) \\ \text{until } p_n^{\text{yes}} + p_n^{\text{no}} \geq 1 - \varepsilon \end{cases}$$

 $\bullet \ \textcircled{\ } = \{s \in S \mid s \not\models \exists \mathbf{F} \textcircled{\ } \bigcirc \}$

Approximation scheme

Given $\varepsilon > 0$, for every n, compute: $\begin{cases}
p_n^{\text{yes}} = \mathbb{P}(\mathbf{F}_{\leq n} \circlearrowright) \\
p_n^{\text{no}} = \mathbb{P}(\mathbf{F}_{\leq n} \circlearrowright) \\
\text{until } p_n^{\text{yes}} + p_n^{\text{no}} \ge 1 - \varepsilon
\end{cases}$

$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\bigodot}) \leq 1 - p_1^{\text{no}}$$

 $\bullet \ \textcircled{\ } = \{ s \in S \mid s \not\models \exists \mathbf{F} \textcircled{\ } \bigcirc \} \}$

Approximation scheme

Given $\varepsilon > 0$, for every n, compute: $\begin{cases}
p_n^{\text{yes}} = \mathbb{P}(\mathbf{F}_{\leq n} \bigcirc) \\
p_n^{\text{no}} = \mathbb{P}(\mathbf{F}_{\leq n} \bigcirc) \\
\text{until } p_n^{\text{yes}} + p_n^{\text{no}} \ge 1 - \varepsilon
\end{cases}$

$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\circlearrowright}) \leq 1 - p_1^{\text{no}}$$

$$\stackrel{\text{IA}}{\stackrel{\text{yes}}{=}} \leq \mathbb{P}(\mathbf{F}^{\circlearrowright}) \leq 1 - p_2^{\text{no}}$$

 $\bullet \ \textcircled{\ } = \{s \in S \mid s \not\models \exists \mathbf{F} \textcircled{\ } \bigcirc \}$

Approximation scheme

Given $\varepsilon > 0$, for every n, compute: $\begin{cases}
p_n^{\text{yes}} = \mathbb{P}(\mathbf{F}_{\leq n} \bigcirc) \\
p_n^{\text{no}} = \mathbb{P}(\mathbf{F}_{\leq n} \bigodot) \\
\text{until } p_n^{\text{yes}} + p_n^{\text{no}} \ge 1 - \varepsilon
\end{cases}$

$$p_{1}^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\circ}) \leq 1 - p_{1}^{\text{no}}$$

$$\downarrow \wedge \qquad \lor \downarrow$$

$$p_{2}^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\circ}) \leq 1 - p_{2}^{\text{no}}$$

$$\downarrow \wedge \qquad \vdots \qquad \lor \downarrow$$

[IN97] P. Iyer, M. Narasimha. Probabilistic lossy channel systems (TAPSOFT'97) [ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

 $\bullet \ \ \textcircled{\ } = \{s \in S \mid s \not\models \exists \mathbf{F} \textcircled{\ } \textcircled{\ } \}$

Approximation scheme

Given
$$\varepsilon > 0$$
, for every n , compute:

$$\begin{cases}
p_n^{\text{yes}} = \mathbb{P}(\mathbf{F}_{\leq n} \circlearrowright) \\
p_n^{\text{no}} = \mathbb{P}(\mathbf{F}_{\leq n} \circlearrowright) \\
\text{until } p_n^{\text{yes}} + p_n^{\text{no}} \ge 1 - \varepsilon
\end{cases}$$

$$p_1^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\circlearrowright}) \leq 1 - p_1^{\text{no}}$$

$$\downarrow \land \qquad \lor \downarrow$$

$$p_2^{\text{yes}} \leq \mathbb{P}(\mathbf{F}^{\circlearrowright}) \leq 1 - p_2^{\text{no}}$$

At the limit: $\mathbb{P}(\mathbf{F} \bigcirc)$

IΛ

VI

[IN97] P. Iyer, M. Narasimha. Probabilistic lossy channel systems (TAPSOFT'97) [ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

[IN97] P. Iyer, M. Narasimha. Probabilistic lossy channel systems (TAPSOFT'97) [ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

Sample N paths

Statistical model-checking

 $\widehat{\mathscr{C}}$ is positive recurrent »)

What can we do for non-decisive Markov chains??

- Analyze a biased Markov chain \mathscr{C}'

Originally used for rare events

[KH51] H. Kahn, T. E. Harris. Estimation of particle transmission by random sampling (National Bureau of Standards applied mathematics series, 1951) [Bar14] B. Barbot. Acceleration for statistical model checking (PhD thesis) [BHP12] B. Barbot, S. Haddad, C. Picaronny. Coupling and Importance Sampling for Statistical Model Checking (TACAS'12)

15

- Analyze a biased Markov chain \mathscr{C}'

Originally used for rare events

- Analyze a biased Markov chain \mathscr{C}'

Correct the bias

$$\gamma(\rho) = \begin{cases} \frac{P(\rho)}{P'(\rho)} & \text{if } \rho \text{ ends in } \bigcirc \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \bigcirc) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

Originally used for rare events

- Analyze a biased Markov chain \mathscr{C}'

- Analyze a biased Markov chain \mathscr{C}'

- Originally used for rare events
- Setting giving statistical guarantees [BHP12, Bar14]

It is sufficient to compute $\mathbb{E}_{\mathscr{C}'}(\gamma)$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\mathcal{O}}{\smile}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

$$\mathbb{P}_{\mathscr{C}}\big(\mathbf{F} \stackrel{\boldsymbol{\smile}}{\smile}\big) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

• The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\mathcal{C}}{\smile}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

- The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods

$$\mathbb{P}_{\mathscr{C}}(\mathbf{F} \overset{\mathcal{C}}{\smile}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$$

• The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$

- Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
- Boundedness of γ is required as well

Define
$$\mu(s)$$
 as
 $\mathbb{P}^{s}_{\mathscr{C}}(\mathbf{F} \overset{\smile}{\smile}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$

- The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
 - Boundedness of γ is required as well

Define
$$\mu(s)$$
 as
 $\mathbb{P}^{s}_{\mathscr{C}}(\mathbf{F}^{\circlearrowright}) = \mathbb{E}_{\mathscr{C}'}(\gamma)$

- The analysis of $\mathscr C$ can be transferred to that of $\mathscr C'$, provided some conditions on $\mathscr C'$
 - Decisiveness of \mathscr{C}' is required for both approx. and estim. methods
 - Boundedness of γ is required as well

There is a best choice:
$$p'_i = \frac{\mu(s_i)}{\mu(s)} \cdot p_i$$

• The r.v. in \mathscr{C}' takes value $\mu(s)$
• One needs to know $\mu!$

 μ^{\bullet} is the probability to reach \bigcirc in \mathscr{C}^{\bullet}

 μ^{\bullet} is the probability to reach $\textcircled{\circ}$ in \mathscr{C}^{\bullet}

 $\sum P(s_1, s_2) \ \mu^{\bullet}(\alpha(s_2)) \le \mu^{\bullet}(\alpha(s_1))$ $P'(s_1, s_2) = P(s_1, s_2) \frac{\mu^{\bullet}(\alpha(s_2))}{\mu^{\bullet}(\alpha(s_1))}$ Cannot reach FS• $\alpha(s_2)$ $\bullet S_2$ $\alpha(s_1)$ α S S' F^{\bullet} F $\overline{}$ No bias here! Desactivation \mathscr{C} C \mathscr{C}' zone

 μ^{\bullet} is the probability to reach F^{\bullet} in \mathscr{C}^{\bullet}

Further properties of the biased Markov chain obtained via an abstraction

Further properties of the biased Markov chain obtained via an abstraction

Further properties of the biased Markov chain obtained via an abstraction

Proof using attractors, martingale theory

Further properties of the biased Markov chain obtained via an abstraction

• The analysis can be performed on $\mathscr{C}'!$

- <u>Model</u> = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda : S \to \mathbb{N}$ s.t.
 - for every $s_1 \rightarrow s_2$, $\lambda(s_1) \lambda(s_2) \leq 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite

- <u>Model</u> = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda : S \to \mathbb{N}$ s.t.
 - for every $s_1
 ightarrow s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite

• <u>Abstraction</u> = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

- <u>Model</u> = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda : S \to \mathbb{N}$ s.t.
 - for every $s_1
 ightarrow s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- <u>Abstraction</u> = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

- <u>Model</u> = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda : S \to \mathbb{N}$ s.t.
 - for every $s_1
 ightarrow s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

Only one condition needs to be satisfied... The **monotony** condition!

- <u>Model</u> = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda : S \to \mathbb{N}$ s.t.
 - for every $s_1
 ightarrow s_2$, $\lambda(s_1) \lambda(s_2) \le 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

Only one condition needs to be satisfied... The **monotony** condition!

That will be ensured by a divergence property depending on p, expressing a congestion phenomenon

- <u>Model</u> = layered Markov chain (LMC) \mathscr{C} : there is a level function $\lambda : S \to \mathbb{N}$ s.t.
 - for every $s_1
 ightarrow s_2$, $\lambda(s_1) \lambda(s_2) \leq 1$, and
 - for every n, $\lambda^{-1}(n)$ is finite
- Abstraction = random walk \mathscr{C}_p^{\bullet} of parameter $p > \frac{1}{2}$

Only one condition needs to be satisfied... The **monotony** condition!

That will be ensured by a divergence property depending on *p*, expressing a congestion phenomenon

Example

 Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If ${\mathscr C}$ is decisive

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If ${\mathscr C}$ is decisive
 - Apply Approx and Estim on ${\mathscr C}$

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If ${\mathscr C}$ is decisive
 - Apply Approx and Estim on ${\mathscr C}$
 - If $\mathscr C$ is « $\hat p$ -divergent »

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If ${\mathscr C}$ is decisive
 - Apply Approx and Estim on ${\mathscr C}$
 - If $\mathscr C$ is « $\hat p$ -divergent »
 - _ Use the abstraction \mathscr{C}_p^{\bullet} with $\frac{1}{2}$

https://cosmos.lacl.fr/

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If ${\mathscr C}$ is decisive
 - Apply Approx and Estim on ${\mathscr C}$
 - If $\mathscr C$ is « $\hat p$ -divergent »
 - _ Use the abstraction \mathscr{C}_p^{\bullet} with $\frac{1}{2}$
 - Apply Approx and Estim on corresponding \mathscr{C}'_p (computed on-the-fly)

https://cosmos.lacl.fr/

[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from concepts to experimentation (Performance Evaluation)

- Implementation of the two approaches in tool Cosmos (development effort: Benoît Barbot)
- Application to probabilistic pushdown automata viewed as LMCs
- Methodology:
 - If ${\mathscr C}$ is decisive
 - Apply Approx and Estim on ${\mathscr C}$
 - If $\mathscr C$ is « $\hat p$ -divergent »
 - _ Use the abstraction \mathscr{C}_p^{\bullet} with $\frac{1}{2}$
 - Apply Approx and Estim on corresponding \mathscr{C}'_p (computed on-the-fly)

Note: in all experiments, the confidence is set to $99\ \%$

https://cosmos.lacl.fr/

[BBDHP15] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin. Hasl: A new approach for performance evaluation and model checking from concepts to experimentation (Performance Evaluation)

Examples of results

Parameter p for the abstraction

• Two approaches (numerical and statistical) for analysis of infinite Markov chains

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of **importance sampling** to handle some non-decisive Markov chains

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of **importance sampling** to handle some non-decisive Markov chains
 - Original application of the importance sampling idea

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of **importance sampling** to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of **importance sampling** to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata

Some more classes to be applied?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results

Some more classes to be applied?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?

Some more classes to be applied?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a « best p »?

Some more classes to be applied?

- Two approaches (numerical and statistical) for analysis of infinite Markov chains
 - Both require a **decisiveness** assumption!
- Use of importance sampling to handle some non-decisive Markov chains
 - Original application of the importance sampling idea
 - Both approaches can be applied to the biased Markov chains (conditions for correctness are given)
 - A general low-level model (LMC) + application to prob. pushdown automata
- Interesting empirical results
 - Acceleration of the verification of decisive Markov chains in some cases?
 - Existence of a « best p »?

Any theoretical justification for that?

Some more

classes to be

applied?