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General purpose

Design algorithms to estimate probabilities in some infinite-state 
Markov chains, with guarantees

Our contributions

‣ Review two existing approaches (approximation algorithm and estimation 
algorithm) and specify the required hypothesis for correctness 

‣ Propose an approach based on importance sampling and abstraction to 
partly relax the hypothesis 

‣ Analyze empirically the approaches
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Quantitative analysis of 
Markov chains
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Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1

Decisiveness

= {s ∈ S ∣ s /⊧ ∃F }
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‣ Examples of decisive Markov chains: finite Markov chains, probabilistic lossy 
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‣ Example/counterexample:

Decisiveness

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007)

A DTMC   is decisive from  w.r.t.         if 𝒞 s ℙs(F ∨ F ) = 1
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= {s ∈ S ∣ s /⊧ ∃F }

• Recurrent random walk ( ): decisive 

• Transient random walk ( ): not decisive
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Deciding decisiveness?

‣ Probabilistic pushdown automata with constant weights [ABM07] 

‣ Random walks with polynomial weights [FHY23] 

‣ So-called probabilistic homogeneous  one-counter machines with polynomial 
weights (this extends the model of quasi-birth death processes) [FHY23]

Classes where decisiveness can be decided

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr. Decisive Markov chains (LMCS, 2007) 
[FHY23] A. Finkel, S. Haddad, L. Yé. About decisiveness of dynamic probabilistic models (CONCUR’23)
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Statistical model-checking
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Termination, efficiency and 
guarantees

A sampled path starting at  almost-surely hits         or      
iff 

 is decisive from  w.r.t.       

s0

𝒞 s0

Termination (To our knowledge, never expressed like this)



11

Decisiveness vs recurrence

Cannot 
reach      s0

𝒞



11

Decisiveness vs recurrence

̂𝒞

s0
Cannot 
reach      s0

𝒞



11

Decisiveness vs recurrence

̂𝒞

s0
Cannot 
reach      s0

𝒞

 is decisive from  w.r.t.                   
iff 

 is recurrent

𝒞 s0

̂𝒞



11

Decisiveness vs recurrence

̂𝒞

s0
Cannot 
reach      s0

𝒞

 is decisive from  w.r.t.                   
iff 

 is recurrent

𝒞 s0

̂𝒞

‣ If  is positive recurrent, then sampling a single path in  will take finite timê𝒞 𝒞
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Decisiveness vs recurrence

̂𝒞
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Cannot 
reach      s0

𝒞

 is decisive from  w.r.t.                   
iff 

 is recurrent

𝒞 s0

̂𝒞

‣ If  is positive recurrent, then sampling a single path in  will take finite timê𝒞 𝒞

‣ If  is null recurrent, then sampling a single path in  might take an arbitrary timê𝒞 𝒞

The time to sample even 
increases/diverges!

Efficiency of sampling
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guarantees

A sampled path starting at  almost-surely hits         or      
iff 

 is decisive from  w.r.t.       

s0

𝒞 s0

Termination (To our knowledge, never expressed like this)

+ efficiency if finite return time 
(«   is positive recurrent »)𝒞

Guarantees: Hoeffding’s inequalities

: confidence interval[ fN
N

−
ε
2

;
fN
N

+
ε
2 ] Value given by  for paths 

that stop at 
L



14

What can we do for 
non-decisive Markov chains??
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Importance sampling 
[KH51]

[KH51] H. Kahn, T. E. Harris. Estimation of particle transmission by random sampling (National Bureau of Standards applied mathematics series, 1951) 
[Bar14] B. Barbot. Acceleration for statistical model checking (PhD thesis) 
[BHP12] B. Barbot, S. Haddad, C. Picaronny. Coupling and Importance Sampling for Statistical Model Checking (TACAS’12)
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If  is finite and for every ,  is finite, then  is 
decisive w.r.t.       .

F 0 ≤ x < 1 {s ∈ S ∣ μ∙(α(s)) ≥ x} 𝒞′ 

Theorem

‣ The analysis can be performed on !𝒞′ 
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p p >

1
2

And «concretely»?

Only one condition needs to be satisfied… 
The monotony condition!

That will be ensured by a 
divergence property depending on , 

expressing a congestion 
phenomenon

p
 OK and     OKp

1
2

< p′ < p ⇒ p′ 
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Example

 is not decisive𝒞

𝒞 𝒞∙
0.6 𝒞′ 

 is decisive 
+ finite sampling time

𝒞′ 
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Examples of results
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• Original application of the importance sampling idea
• Both approaches can be applied to the biased Markov chains 

(conditions for correctness are given)
• A general low-level model (LMC) + application to prob. pushdown automata

‣ Interesting empirical results
• Acceleration of the verification of decisive Markov chains in some cases?

• Existence of a « best  »?p

Any theoretical 
justification for that?

Some more 
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applied?


