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Arithmetic Circuits
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN ] be a polynomial
(In this talk F field of characteristic 0)

An arithmetic circuit is a model of computation which
computes polynomials.
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Hard to obtain lower bounds

First: lower bounds for formulas?
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Arithmetic formula (graph is a tree)
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN ] be a polynomial

We can expand arithmetic circuits to get arithmetic formulas
(possible blow-up: (size)depth ).

Depth

x1 x1 x2 x1 x3 x1 x1 x2 x1 x3 x1 x2 x1 x3 x2 x3

+ + + + + + + + +

× × ×

+

f (x1, x2, x3)

x1(x1+x2)(x1+x3)+x1(x1+x2)(x1+x3)+(x1+x2)(x1+x3)(x2+x3)
Size = Number of leaves. In this case 16

A formula is homogeneous if all intermediate gates are



Syntactic degree
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▶ Degree not clear from the formula (maybe some cancelations)
▶ Syntactic degree:

1. c ∈ F has degree 0
2. xi has degree 1
3. Degree of a + gate: max of the degrees of the children
4. Degree of a ∗ gate: sum of the degrees of the children

▶ If a formula is homogeneous:
degree and syntactic degree coincide
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Algebraic Complexity Theory

Algebraic lower bounds.

Question

Prove superpolynomial lower bounds for general arith-
metic circuits.

▶ An Ω(n2) lower bound for computing the elementary
symmetric polynomials [Kal 1985, CKSV 2020]

▶ Superpolynomial lower bounds for constant depth arithmetic
formulas for the determinant. [LST 2021]

▶ More precisely: Superpolynomial lower bounds against
arithmetic formulas of depth O(log log d) for d ≪ s.
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Arithmetic formulas are surprisingly powerful
▶ Interpolation of coefficient of a polynomial of small degree d

[f (x)]xp =
d∑

i=0

λpif (i)

▶ Elementary symmetric polynomials [Ben-Or]

ed(x1, . . . , xn) =

[
n∏

i=1

(1+ txi)

]
td

(not homogeneous!)

▶ Polynomial division with remainder [BP 1985]
▶ Recently [AW 2024]: computing gcd of polynomials,

discriminant, resultant, Bézout coefficients, square-free
decomposition of a polynomial

● Product of n (2× 2)-matrices can be done by poly-size
formulas, but the depth has to be more than constant.

■ The determinant not expected to have poly-size formulas.
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What is the best general depth-reduction for formulas
when d ≪ s?

▶ Parallelization of the formulas to depth O(log s). [BKM73]
▶ Parallelization of the circuits to depth O(log d). [VSBR83]

→ Parallel. formulas to depth O(log d) and new size dO(log s)

Question:
Is there a poly size parallelization of formulas to depth O(log d)?
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▶ If d = o(log s), we can homogeneize the formula [Raz13],
which gives a better parallelization to depth O(d) = o(log s).
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What is the best general depth-reduction for formulas
when d ≪ s?
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→ Parallel. formulas to depth O(log d) and new size dO(log s)
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▶ [FLMST 2023] True for homogeneous formulas
▶ → weaker condition: syntactic degree polynomially

bounded (Quasi-homogeneous)



Cost of (quasi-)homogenization

Circuits can be homogeneized

→ size of the homogeneous formula dO(log s)

Case where poly-size homogeneization is known:

(1) d = o(log s) [Raz 2010], (2) Depth-3 [SW 2001, HY 2011]

[FLST 2024] P of degree d given by formula of size s:
▶ If d = so(1), P has homogeneous formula of size do(log s)

▶ ∀ε > 0, P has quasi-homogeneous formula of size
do(log s) and syntactic degree d1+ε

Consequence: if P of degree n has no quasi-homogeneous
formula of size no(log n), then P also does not have any formula
of size poly(n)
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CombiningQuasi-homogeneization + depth reduction

[VSBR 1983] Reduction to O(log d): cost dO(log s)

[FLMST 23]
Syntactic degree is poly(d)→ parallelization depth O(log(d))

▶ If d = o(log s), (using [Raz13])
the parallelization works for general formulas.

▶
[FLST 24] Quasi-homogeneous formula of size do(log s)

General parallel. to O(log d) but new size do(log s)
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Parallelization of homogeneous formulas - Intuition I

If the (syntactic) degrees of all the gates are well-distributed:

. . .

×

degree δ

degree ≤ δ/2 degree ≤ δ/2 degree ≤ δ/2

We directly obtain a formula of depth O(log d).
Hard case: Below a ×-gate, there is one subformula of large degree.
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Each multiplication is skew:
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Parallelization of homogeneous formulas - Proof

Let us associate to each node α its κ-potential:

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Let κ be a positive integer.
Any homogeneous formula F of fan-in 2, depth ∆, and size s can be
parallelized into a formula G (of arbitrary fan-in) of product-depth at
most ϕκ(root) and size at most s2κ log d .

Starting with [BKM73] parallelization.
Then, taking κ = ⌈log s/ log d⌉ gives the announced parallelization.
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Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases
▶ Leaves of the whole formula

duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated?

Only
if their log-degree decreases

▶ Leaves of the whole formula
duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases
▶ Leaves of the whole formula

duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.

▶ Leaves of GV : duplicated? Only
if their log-degree decreases

▶ Leaves of the whole formula
duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases

▶ Leaves of the whole formula
duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases
▶ Leaves of the whole formula

duplicated at most 2κ log d times.



Summary

Any formula of size s and syntactic degree poly(d)
can be parallelized into a formula with
product-depth ≤ O(log d) and size ≤ poly(s).

Corollary: Any formula of size s

Top

(1) with d = o(log s), can be parallel.

Top Top

to depth ≤ O(log d) and size ≤ poly(s),

Top

(2) can be parallel. to depth≤ O(log d) and size≤ do(log s)

▶ It preserves monotonicity/order/(set)-multilinearity
▶ Optimal in the monotone case!
▶ Also obtain a near-linear parallelization [BB94,BCE95]:

size s1+ε and depth 2O(1/ε) log d .



OpenQuestions

homogeneous formulas

poly syntactic degree formulas

logarithmic depth formulas

formulas (VP)

Elementary symm.
polynomials
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