
Structural Results for Arithmetic Formulas

Sébastien Tavenas
Univ. Savoie Mont Blanc, CNRS, LAMA

Joint work with

Hervé Fournier (Université Paris Cité)
Nutan Limaye (IT University of Copenhagen)

Guillaume Malod (Université Paris Cité)
Srikanth Srinivasan (University of Copenhagen)

June 03, 2025
CAALM Days 2025



Arithmetic Circuits
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN ] be a polynomial
(In this talk F field of characteristic 0)

An arithmetic circuit is a model of computation which
computes polynomials.

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Hard to obtain lower bounds

First: lower bounds for formulas?



Arithmetic Circuits
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN ] be a polynomial
(In this talk F field of characteristic 0)

An arithmetic circuit is a model of computation which
computes polynomials.

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Hard to obtain lower bounds
First: lower bounds for formulas?



Arithmetic formula (graph is a tree)
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN ] be a polynomial

We can expand arithmetic circuits to get arithmetic formulas
(possible blow-up: (size)depth ).

Depth

x1 x1 x2 x1 x3 x1 x1 x2 x1 x3 x1 x2 x1 x3 x2 x3

+ + + + + + + + +

× × ×

+

f (x1, x2, x3)

x1(x1+x2)(x1+x3)+x1(x1+x2)(x1+x3)+(x1+x2)(x1+x3)(x2+x3)
Size = Number of leaves. In this case 16

A formula is homogeneous if all intermediate gates are



Syntactic degree

x3 x1 x2 −2 x3 x3 x1 x2 −2 x3 x1 x2 −2 x3 3 x3 −1

+ + + + + + + + + +

× × ×

+

▶ Degree not clear from the formula (maybe some cancelations)
▶ Syntactic degree:

1. c ∈ F has degree 0
2. xi has degree 1
3. Degree of a + gate: max of the degrees of the children
4. Degree of a ∗ gate: sum of the degrees of the children

▶ If a formula is homogeneous:
degree and syntactic degree coincide



Syntactic degree

x3 x1 x2 −2 x3 x3 x1 x2 −2 x3 x1 x2 −2 x3 3 x3 −1

+ + + + + + + + + +

× × ×

+

▶ Degree not clear from the formula (maybe some cancelations)
▶ Syntactic degree:

1. c ∈ F has degree 0
2. xi has degree 1
3. Degree of a + gate: max of the degrees of the children
4. Degree of a ∗ gate: sum of the degrees of the children

▶ If a formula is homogeneous:
degree and syntactic degree coincide



Syntactic degree

x3 x1 x2 −2 x3 x3 x1 x2 −2 x3 x1 x2 −2 x3 3 x3 −1

+ + + + + + + + + +

× × ×

+

▶ Degree not clear from the formula (maybe some cancelations)
▶ Syntactic degree:

1. c ∈ F has degree 0
2. xi has degree 1
3. Degree of a + gate: max of the degrees of the children
4. Degree of a ∗ gate: sum of the degrees of the children

▶ If a formula is homogeneous:
degree and syntactic degree coincide



Algebraic Complexity Theory

Algebraic lower bounds.

Question

Prove superpolynomial lower bounds for general arith-
metic circuits.

▶ An Ω(n2) lower bound for computing the elementary
symmetric polynomials [Kal 1985, CKSV 2020]

▶ Superpolynomial lower bounds for constant depth arithmetic
formulas for the determinant. [LST 2021]

▶ More precisely: Superpolynomial lower bounds against
arithmetic formulas of depth O(log log d) for d ≪ s.



Algebraic Complexity Theory

Algebraic lower bounds.

Question

Prove superpolynomial lower bounds for general arith-
metic formulas.

▶ An Ω(n2) lower bound for computing the elementary
symmetric polynomials [Kal 1985, CKSV 2020]

▶ Superpolynomial lower bounds for constant depth arithmetic
formulas for the determinant. [LST 2021]

▶ More precisely: Superpolynomial lower bounds against
arithmetic formulas of depth O(log log d) for d ≪ s.



Algebraic Complexity Theory

Algebraic lower bounds.

Question

Prove superpolynomial lower bounds for general arith-
metic formulas.

▶ An Ω(n2) lower bound for computing the elementary
symmetric polynomials [Kal 1985, CKSV 2020]

▶ Superpolynomial lower bounds for constant depth arithmetic
formulas for the determinant. [LST 2021]

▶ More precisely: Superpolynomial lower bounds against
arithmetic formulas of depth O(log log d) for d ≪ s.



Algebraic Complexity Theory

Algebraic lower bounds.

Question

Prove superpolynomial lower bounds for general arith-
metic formulas.

▶ An Ω(n2) lower bound for computing the elementary
symmetric polynomials [Kal 1985, CKSV 2020]

▶ Superpolynomial lower bounds for constant depth arithmetic
formulas for the determinant. [LST 2021]

▶ More precisely: Superpolynomial lower bounds against
arithmetic formulas of depth O(log log d) for d ≪ s.



Arithmetic formulas are surprisingly powerful
▶ Interpolation of coefficient of a polynomial of small degree d

[f (x)]xp =
d∑

i=0

λpif (i)

▶ Elementary symmetric polynomials [Ben-Or]

ed(x1, . . . , xn) =

[
n∏

i=1

(1+ txi)

]
td

(not homogeneous!)

▶ Polynomial division with remainder [BP 1985]
▶ Recently [AW 2024]: computing gcd of polynomials,

discriminant, resultant, Bézout coefficients, square-free
decomposition of a polynomial

● Product of n (2× 2)-matrices can be done by poly-size
formulas, but the depth has to be more than constant.

■ The determinant not expected to have poly-size formulas.



Arithmetic formulas are surprisingly powerful
▶ Interpolation of coefficient of a polynomial of small degree d

[f (x)]xp =
d∑

i=0

λpif (i)

▶ Elementary symmetric polynomials [Ben-Or]

ed(x1, . . . , xn) =

[
n∏

i=1

(1+ txi)

]
td

(not homogeneous!)

▶ Polynomial division with remainder [BP 1985]
▶ Recently [AW 2024]: computing gcd of polynomials,

discriminant, resultant, Bézout coefficients, square-free
decomposition of a polynomial

● Product of n (2× 2)-matrices can be done by poly-size
formulas, but the depth has to be more than constant.

■ The determinant not expected to have poly-size formulas.



Arithmetic formulas are surprisingly powerful
▶ Interpolation of coefficient of a polynomial of small degree d

[f (x)]xp =
d∑

i=0

λpif (i)

▶ Elementary symmetric polynomials [Ben-Or]

ed(x1, . . . , xn) =

[
n∏

i=1

(1+ txi)

]
td

(not homogeneous!)

▶ Polynomial division with remainder [BP 1985]
▶ Recently [AW 2024]: computing gcd of polynomials,

discriminant, resultant, Bézout coefficients, square-free
decomposition of a polynomial

● Product of n (2× 2)-matrices can be done by poly-size
formulas, but the depth has to be more than constant.

■ The determinant not expected to have poly-size formulas.



Algebraic Complexity Theory

Algebraic lower bounds.

Question

Prove superpolynomial lower bounds for general arith-
metic formulas.

▶ An Ω(n2) lower bound for computing the elementary
symmetric polynomials [Kal 1985, CKSV 2020]

▶ Superpolynomial lower bounds for constant depth arithmetic
formulas for the determinant. [LST 2021]

▶ More precisely: Superpolynomial lower bounds against
arithmetic formulas of depth O(log log d) for d ≪ s.



Algebraic Complexity Theory

Algebraic lower bounds.

Question

Prove superpolynomial lower bounds for general arith-
metic formulas.

▶ An Ω(n2) lower bound for computing the elementary
symmetric polynomials [Kal 1985, CKSV 2020]

▶ Superpolynomial lower bounds for constant depth arithmetic
formulas for the determinant. [LST 2021]

▶ More precisely: Superpolynomial lower bounds against
arithmetic formulas of depth O(log log d) for d ≪ s.



What is the best general depth-reduction for formulas
when d ≪ s?

▶ Parallelization of the formulas to depth O(log s). [BKM73]
▶ Parallelization of the circuits to depth O(log d). [VSBR83]

→ Parallel. formulas to depth O(log d) and new size dO(log s)

Question:
Is there a poly size parallelization of formulas to depth O(log d)?



What is the best general depth-reduction for formulas
when d ≪ s?

▶ Parallelization of the formulas to depth O(log s). [BKM73]
▶ Parallelization of the circuits to depth O(log d). [VSBR83]

→ Parallel. formulas to depth O(log d) and new size dO(log s)

Question:
Is there a poly size parallelization of formulas to depth O(log d)?



What is the best general depth-reduction for formulas
when d ≪ s?

▶ Parallelization of the formulas to depth O(log s). [BKM73]
▶ Parallelization of the circuits to depth O(log d). [VSBR83]

→ Parallel. formulas to depth O(log d) and new size dO(log s)

Question:
Is there a poly size parallelization of formulas to depth O(log d)?

▶ The question makes sense only for “unbounded fan-ins".
▶ If the sparsity of a polynomial is poly-size, then smal

∑∏
!

▶ If d = o(log s), we can homogeneize the formula [Raz13],
which gives a better parallelization to depth O(d) = o(log s).



What is the best general depth-reduction for formulas
when d ≪ s?

▶ Parallelization of the formulas to depth O(log s). [BKM73]
▶ Parallelization of the circuits to depth O(log d). [VSBR83]

→ Parallel. formulas to depth O(log d) and new size dO(log s)

Question:
Is there a poly size parallelization of formulas to depth O(log d)?

▶ The question makes sense only for “unbounded fan-ins".
▶ If the sparsity of a polynomial is poly-size, then smal

∑∏
!

▶ If d = o(log s), we can homogeneize the formula [Raz13],
which gives a better parallelization to depth O(d) = o(log s).



What is the best general depth-reduction for formulas
when d ≪ s?

▶ Parallelization of the formulas to depth O(log s). [BKM73]
▶ Parallelization of the circuits to depth O(log d). [VSBR83]

→ Parallel. formulas to depth O(log d) and new size dO(log s)

Question:
Is there a poly size parallelization of formulas to depth O(log d)?

▶ The question makes sense only for “unbounded fan-ins".
▶ If the sparsity of a polynomial is poly-size, then smal

∑∏
!

▶ If d = o(log s), we can homogeneize the formula [Raz13],
which gives a better parallelization to depth O(d) = o(log s).



What is the best general depth-reduction for formulas
when d ≪ s?

▶ Parallelization of the formulas to depth O(log s). [BKM73]
▶ Parallelization of the circuits to depth O(log d). [VSBR83]

→ Parallel. formulas to depth O(log d) and new size dO(log s)

Question:
Is there a poly size parallelization of formulas to depth O(log d)?

▶ [FLMST 2023] True for homogeneous formulas
▶ → weaker condition: syntactic degree polynomially

bounded (Quasi-homogeneous)



Cost of (quasi-)homogenization

Circuits can be homogeneized

→ size of the homogeneous formula dO(log s)

Case where poly-size homogeneization is known:

(1) d = o(log s) [Raz 2010], (2) Depth-3 [SW 2001, HY 2011]

[FLST 2024] P of degree d given by formula of size s:
▶ If d = so(1), P has homogeneous formula of size do(log s)

▶ ∀ε > 0, P has quasi-homogeneous formula of size
do(log s) and syntactic degree d1+ε

Consequence: if P of degree n has no quasi-homogeneous
formula of size no(log n), then P also does not have any formula
of size poly(n)



Cost of (quasi-)homogenization

Circuits can be homogeneized

→ size of the homogeneous formula dO(log s)

Case where poly-size homogeneization is known:

(1) d = o(log s) [Raz 2010], (2) Depth-3 [SW 2001, HY 2011]

[FLST 2024] P of degree d given by formula of size s:
▶ If d = so(1), P has homogeneous formula of size do(log s)

▶ ∀ε > 0, P has quasi-homogeneous formula of size
do(log s) and syntactic degree d1+ε

Consequence: if P of degree n has no quasi-homogeneous
formula of size no(log n), then P also does not have any formula
of size poly(n)



Cost of (quasi-)homogenization

Circuits can be homogeneized

→ size of the homogeneous formula dO(log s)

Case where poly-size homogeneization is known:

(1) d = o(log s) [Raz 2010], (2) Depth-3 [SW 2001, HY 2011]

[FLST 2024] P of degree d given by formula of size s:
▶ If d = so(1), P has homogeneous formula of size do(log s)

▶ ∀ε > 0, P has quasi-homogeneous formula of size
do(log s) and syntactic degree d1+ε

Consequence: if P of degree n has no quasi-homogeneous
formula of size no(log n), then P also does not have any formula
of size poly(n)



CombiningQuasi-homogeneization + depth reduction

[VSBR 1983] Reduction to O(log d): cost dO(log s)

[FLMST 23]
Syntactic degree is poly(d)→ parallelization depth O(log(d))

▶ If d = o(log s), (using [Raz13])
the parallelization works for general formulas.

▶
[FLST 24] Quasi-homogeneous formula of size do(log s)

General parallel. to O(log d) but new size do(log s)



CombiningQuasi-homogeneization + depth reduction

[VSBR 1983] Reduction to O(log d): cost dO(log s)

[FLMST 23]
Syntactic degree is poly(d)→ parallelization depth O(log(d))

▶ If d = o(log s), (using [Raz13])
the parallelization works for general formulas.

▶
[FLST 24] Quasi-homogeneous formula of size do(log s)

General parallel. to O(log d) but new size do(log s)



CombiningQuasi-homogeneization + depth reduction

[VSBR 1983] Reduction to O(log d): cost dO(log s)

[FLMST 23]
Syntactic degree is poly(d)→ parallelization depth O(log(d))

▶ If d = o(log s), (using [Raz13])
the parallelization works for general formulas.

▶
[FLST 24] Quasi-homogeneous formula of size do(log s)

General parallel. to O(log d) but new size do(log s)



Parallelization of homogeneous formulas - Intuition I

If the (syntactic) degrees of all the gates are well-distributed:

. . .

×

degree δ

degree ≤ δ/2 degree ≤ δ/2 degree ≤ δ/2

We directly obtain a formula of depth O(log d).
Hard case: Below a ×-gate, there is one subformula of large degree.



Parallelization of homogeneous formulas - Intuition I

If the (syntactic) degrees of all the gates are well-distributed:

. . .

×

degree δ

degree ≤ δ/2 degree ≤ δ/2 degree ≤ δ/2

We directly obtain a formula of depth O(log d).

Hard case: Below a ×-gate, there is one subformula of large degree.



Parallelization of homogeneous formulas - Intuition I

If the (syntactic) degrees of all the gates are well-distributed:

. . .

×

degree δ

degree ≤ δ/2 degree > δ/2 degree ≤ δ/2

We directly obtain a formula of depth O(log d).
Hard case: Below a ×-gate, there is one subformula of large degree.



Parallelization of homogeneous formulas - Intuition II

OK, let us make a hard case!

Each multiplication is skew:

x x x x x x x

× × × × × × ×

+ x + x + x

× × ×

+

The sparsity is bounded by the number of leaves!
Small

∑∏
formula!



Parallelization of homogeneous formulas - Intuition II

OK, let us make a hard case!
Each multiplication is skew:

x x x x x x x

× × × × × × ×

+ x + x + x

× × ×

+

The sparsity is bounded by the number of leaves!
Small

∑∏
formula!



Parallelization of homogeneous formulas - Intuition II

OK, let us make a hard case!
Each multiplication is skew:

x x x x x x x

× × × × × × ×

+ x + x + x

× × ×

+

The sparsity is bounded by the number of leaves!
Small

∑∏
formula!



Parallelization of homogeneous formulas - Proof

Let us associate to each node α its κ-potential:

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Let κ be a positive integer.
Any homogeneous formula F of fan-in 2, depth ∆, and size s can be
parallelized into a formula G (of arbitrary fan-in) of product-depth at
most ϕκ(root) and size at most s2κ log d .

Starting with [BKM73] parallelization.
Then, taking κ = ⌈log s/ log d⌉ gives the announced parallelization.



Parallelization of homogeneous formulas - Proof

Let us associate to each node α its κ-potential:

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Let κ be a positive integer.
Any homogeneous formula F of fan-in 2, depth ∆, and size s can be
parallelized into a formula G (of arbitrary fan-in) of product-depth at
most ϕκ(root) and size at most s2κ log d .

Starting with [BKM73] parallelization.
Then, taking κ = ⌈log s/ log d⌉ gives the announced parallelization.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases
▶ Leaves of the whole formula

duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated?

Only
if their log-degree decreases

▶ Leaves of the whole formula
duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases
▶ Leaves of the whole formula

duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.

▶ Leaves of GV : duplicated? Only
if their log-degree decreases

▶ Leaves of the whole formula
duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases

▶ Leaves of the whole formula
duplicated at most 2κ log d times.



Proof of the lemma

ϕκ(α) = ⌈log dα⌉+ ⌈depth(Fα)/κ⌉.

Lemma
Any homogeneous formula F of fan-in 2, sum-depth∆, and size s can
be parallelized into a formula G (of arbitrary fan-in) of product-depth
at most ϕκ(root) and size at most s2κ log d .

Depth κ

x x x x

× × × ×

+
x

+
x

× ×

+

▶ Nodes α such that ϕκ(α) = V .
GV the corresponding formula.

▶ GV is skew with fan-in 2,
hence GV ∈

∑2κ ∏.
▶ Leaves of GV : duplicated? Only

if their log-degree decreases
▶ Leaves of the whole formula

duplicated at most 2κ log d times.



Summary

Any formula of size s and syntactic degree poly(d)
can be parallelized into a formula with
product-depth ≤ O(log d) and size ≤ poly(s).

Corollary: Any formula of size s

Top

(1) with d = o(log s), can be parallel.

Top Top

to depth ≤ O(log d) and size ≤ poly(s),

Top

(2) can be parallel. to depth≤ O(log d) and size≤ do(log s)

▶ It preserves monotonicity/order/(set)-multilinearity
▶ Optimal in the monotone case!
▶ Also obtain a near-linear parallelization [BB94,BCE95]:

size s1+ε and depth 2O(1/ε) log d .



OpenQuestions

homogeneous formulas

poly syntactic degree formulas

logarithmic depth formulas

formulas (VP)

Elementary symm.
polynomials



Thank you


