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For any graph G = (V,E) and integer k ≤ |V |, there al-
ways exists a partition V1, . . . , Vk such that for all i, j ∈ [k]
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Cake [0,1] – divisible, heterogenous resource

Agents’ Valuations: va(I) for agent a and interval I

Cake Division among n agents: {I1, I2, . . . , In}

0 1Ia Ib

Envy-Free Division

For all agents a and b, va(Ia) ≥ va(Ib)

Su (1999)

An envy-free cake division always exists, under
mild assumptions on the valuations.

Assumptions: vas are continuous and bear the hungry condt.



Existence of Envy-Free Cake Divisions via Sperner’s Lemma

Sperner’s Lemma

Color the boundary using three colors in a legal way.
No matter how the internal nodes are colored, there exists
a trichromatic triangle.
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1

2 3

13 2

2 3 11

Su (1999)

An envy-free cake division always exists, under mild as-
sumptions on the valuations

Hungry condition: In any partition (x1, x2, . . . , xn) each agent a
prefers some nonempty piece

va([xt, xt+1]) > va(∅).
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Stromquist (2008): No finite time algorithm.

Aziz and Mackenzie (2016): nn
nnnn

time algorithm for
envy-free cake division, with additive valuations &
disconnected pieces



Su (1999)

An envy-free cake division always exists, under
continuous and hungry valuations.
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f(I) := ER

[
ρ (R)

]
Random R contains each va independently with probability

N length

(
I ∩

[
a− 1

N
,
a

N

])
Pr{vs ∈ R} = N

(
x− s

N

)
and

Pr{vt ∈ R} = N
(
y − t−1

N

)
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Cont. extension of the density function: f(I)

Identical valuation of k agents v(I) = f(I) + ε len(I)

Since v is continuous and satisfies the hungry condition,
an envy-free cake division (I∗1 , I

∗
2 , . . . , I

∗
k) always exists

under v.
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Set V ∗i = {s, s+ 1, . . . , t− 1}.

|f(I∗i )− ρ(V ∗i )| ≤ 2

Overall,

ρ(V ∗i ) ≥ ρ(V ∗j )− 4− ε
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Poly-Time Algorithm

For any graph G = (V,E) and k ≤ |V |, we can efficiently
find a partition V1, . . . , Vk such that for all i, j ∈ [k]

|ρ(Vi)− ρ(Vj)| ≤ 4.

For ε ≤ 1/N2, consider collection of intervals

Fε :=
{

[sε, tε] ⊂ [0, 1] : integers t ≥ s
}

‘Guess’ τ = v(I∗i ) and select

Fε(τ) :=
{
I ∈ Fε : v (I) ∈ [τ − ε, τ + ε]

}
Algorithm: Within Fε(τ), find k independent intervals with

maximum total length - Dynamic Program.
Round.



Equitable Graph Cuts

For any graphG = (V,E) and k ≤ |V |, there always exists
a partition V1, . . . , Vk 6= ∅ such that for all i, j ∈ [k]

|δ(Vi)− δ(Vj)| ≤ 5∆ + 1

δ() – cut function & ∆ – max degree

k = 4
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∗
k), under (identical) valuation v of k

agents.

Induced intervals I∗1 , . . . , I
∗
k satisfy v(I∗i ) = v(I∗j ).

Also, len(I∗i ) ≥ 1/N for all i.
Hence, from f(I∗i ) + `(I∗i ) = f(I∗j ) + `(I∗j ) we obtain

f(I∗i ) ≥ f(I∗j )−∆− 1.
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Note V ∗i 6= ∅.



Cont. extension of the cut fn., f(I).
Intervals I∗1 , . . . , I

∗
k satisfy

f(I∗i ) ≥ f(I∗j )−∆− 1.

Rounding: From intervals I∗1 , . . . , I
∗
k to partition V ∗1 , . . . , V

∗
k

0 11
N

2
N

3
N

s−1
N

s
N

t−1
N

t
N

x y
I∗i

Set V ∗i = {s, s+ 1, . . . , t− 1}.

|f(I∗i )− δ(V ∗i )| ≤ 2∆.



Cont. extension of the cut fn., f(I).
Intervals I∗1 , . . . , I

∗
k satisfy

f(I∗i ) ≥ f(I∗j )−∆− 1.

Rounding: From intervals I∗1 , . . . , I
∗
k to partition V ∗1 , . . . , V

∗
k

0 11
N

2
N

3
N

s−1
N

s
N

t−1
N

t
N

x y
I∗i

Set V ∗i = {s, s+ 1, . . . , t− 1}.

|f(I∗i )− δ(V ∗i )| ≤ 2∆.

Overall,

δ(V ∗i ) ≥ δ(V ∗j )− 5∆− 1.



For any graphG = (V,E) and k ≤ |V |, there always exists
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|δ(Vi)− δ(Vj)| ≤ 5∆ + 1

δ() – cut function & ∆ – max degree



Subadditive valuation v : 2E 7→ R+

Additive cost c
Quasilinear utility u(S) := v(S)− c(S).

For any quasilinear u (with u(E) ≥ 0) and any k ≤ |E|,
there exists k-partition E1, . . . Ek such that for all i, j ∈ [k]

|u(Ei)− u(Ej)| ≤ 4 Lip(u).
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Thank you!
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