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Equitably dense subgraphs

For any graph G = (V, E) and integer k£ < |V, there al-
ways exists a partition V1, ..., Vi such that for all 4, j € [k]

Ip(Vi) — p(Vj)] < 4.

p(S) := edge density of subgraph induced by S C V'
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Equitably dense subgraphs

For any graph G = (V, E) and integer k£ < |V, there al-
Vi such that for all 7, j € [k]
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Cake [0,1] — divisible, heterogenous resource

Agents’ Valuations: v, (/) for agent a and interval 1
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Envy-Free Division

For all agents a and b, v,(1,) > v, (1)

Su (1999)

An envy-free cake division always exists, under
mild assumptions on the valuations.

Assumptions: v,s are continuous and bear the hungry condt.



Existence of Envy-Free Cake Divisions via Sperner’s Lemma

N
N
AN

Sperner’s Lemma

Color the boundary using three colors in a legal way.

No matter how the internal nodes are colored, there exists
a trichromatic triangle.
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Existence of Envy-Free Cake Divisions via Sperner’s Lemma

Su (1999)

An envy-free cake division always exists, under mild as-
sumptions on the valuations

In any partition (x1, z2, ..., z,) each agent a
prefers some nonempty piece

Va([mt, T41]) > va(0).
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Su (1999)

An envy-free cake division always exists, under
continuous and hungry valuations.

Stromquist (2008): No finite time algorithm.

Aziz and Mackenzie (2016): """ time algorithm for
envy-free cake division, with additive valuations &
disconnected pieces



Su (1999)

An envy-free cake division always exists, under
continuous and hungry valuations.

For any graph G = (V, E) and integer k£ < |V, there al-
ways exists a partition V1, ..., Vj such that for all 4, j € [k]

lp(Vi) — p(Vj)| < 4.
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Graph G = (V,E)and k < N = |V|.
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Cont. extension of the density function p(-)
f(I) i=Er[p(R) |

Random R contains each v, independently with probability

a—1 a
Nlength (In|2=—= 2
ene <0[N’N]>

Pr{v; € R} = N (z — %) and

Pr{v, € R} = N (y — 5?)



Graph G = (V,E)and k < N = |V|.

1
N

2

Cont. extension of the density function: f(I)




Graph G = (V,E)and k < N = |V|.

1
N

2

Cont. extension of the density function: f(I)

Hungry condition X




Graph G = (V,E)and k < N = |V|.

1
N

e

Cont. extension of the density function: f(I)

Identical valuation of k agents v(I) = f(I) + ¢ len(I)




Graph G = (V,E)and k < N = |V|.

0 o X N v N g N
Cont. extension of the density function: f([)

Identical valuation of k agents v(I) = f(I) + ¢ len(])

Since v is continuous and satisfies the hungry condition,

an envy-free cake division (I7,I5,...,I}) always exists
under v.
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Valuation v(I) = f(I) + ¢ len(I)

Envy-free div /7, ..., I}, under (identical) valuation v:

o(I}) = v(I3)
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Cont. extension of the density fn., f(I)

Valuation v(I) = f(I) + ¢ len(I)
Envy-free div I7},... I}
fU;) =2 fI;) -«

From intervals /7, ..., I; to partition V{*,..., V}

T
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SetV*={s,s+1,...,t —1}.

Overall,
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Poly-Time Algorithm

For any graph G = (V, E) and k < |V|, we can efficiently
find a partition Vi, . .., Vj such that for all 4, j € [k]

Ip(Vi) = p(Vj)] < 4.

For ¢ < 1/N?, consider collection of intervals

e = {[se,ts} C [0,1] : integerst > s}
‘Guess’ 7 = v([) and select

Fo(7) = {I e o) elr —6,T+6]}
Algorithm: Within F.(7), find k independent intervals with

maximum total length - Dynamic Program.
Round.



Equitable Graph Cuts

For any graph G = (V, E) and k < |V, there always exists
a partition Vi, ..., Vi # 0 such that for all ¢, j € [k]

|0(Vi) = (V)] < 5A+1

d() — cut function & A —max degree
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Graph G = (V,E)and k < N = |V|.

0 ¥ ¥ ¥ = ¥ b ¥ 1
Cont. extension of the cut function: f(I)

Identical valuation of k agents v(I) = f(I) + ¢(1)

Since v is continuous and satisfies the hungry condition,

Ixr1c1 PUS TPO ¥ 1
an envy-free cake division (z7,x3,..., ;) always exists
under v.
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Cont. extension of the cut fn., f(I), and “hungry” fn., ¢(1)

Vaiﬁétion v(I) = f(I)+¢(I)

*

Envy-free div (1,...,z}), under (identical) valuation v of k
agents.

Induced intervals I7, ..., I} satisty v(I}) = v(I}).

Also, len(I}) > 1/N for all i.
Hence, from f(I) + £(I}) = f(I}) + £(I}) we obtain

) = F(I) - A—1.
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0.

Note V.
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For any graph G = (V, E) and k < |V, there always exists
a partition Vi, ..., Vi # () such that for all 7, j € [k]

6(Vi) =o(Vj)| < 5A+1

d() — cut function & A —max degree



Subadditive valuation v : 2F > R
Additive cost ¢
Quasilinear utility u(S) := v(S) — ¢(5).

For any quasilinear v (with w(£) > 0) and any k < |E|,
there exists k-partition E, . .. Ej such that for all 4, j € []

[u(E;) — u(Ej)| < 4 Lip(u).
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Additive cost ¢
Quasilinear utility u(S) := v(S) — ¢(5).

For any quasilinear v (with w(£) > 0) and any k < |E|,
there exists k-partition E, . .. Ej such that for all 4, j € []
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Thank you!
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