On Dependent Variables in Reactive Synthesis

ON DEPENDENT VARIABLES IN
REACTIVE SYNTHESIS

Supratik Chakraborty
IIT Bombay

Joint work with S. Akshay, Eliyahu Basa and Dror Fried (TACAS 2024)

CAALM 2025, Paris

Systems with Input/Output Interaction

Output
actions made by AV

Input

signal from sensors

Systems with Input/Output Interaction

Output
actions made by AV

Input

signal from sensors

. .
> L

Specification
Don’t run into a wall

On Dependent Variables in Reactive Synthesis

Systems with Input/Output Interaction

Input

signal from sensors

.
>

Output
actions made by AV

e
L

Specification
Don’t run into a wall

Program/plan

* Stop when observes a wall
nearby

* Slow down when observes a
dead-end sign

On Dependent Variables in Reactive Synthesis

Systems with Input/Output Interaction

Output
actions made by AV

Input -
signal from sensors

. e
> L

\§
Specification 2) Program/plan
Don'’t run into a wall EEEp Verification @mm . siop when observes a wall
* Testing nearby
* Model Checking * Slow down when observes a
dead-end sign

_ J

On Dependent Variables in Reactive Synthesis

Systems with Input/Output Interaction

Input

signal from sensors

.
>

Specification
>

Don’t run into a wall

s N
Synthesis
_ y,

Output
actions made by AV

—l

e
L

Program/plan

* Stop when observes a wall
nearby

* Slow down when observes a
dead-end sign

On Dependent Variables in Reactive Synthesis

Synthesis

Specification (declaration) System (implementation)
- N
. . * Program
* Logical expression ~ mmmp Synthesis =) it

\ J * State Machine

[]
Synthesis

Specification (declaration) System (implementation)
f p
. * Program
* Logical expression ~ mmmp Synthesis =) . it
i ~ / * State Machine

$

* First order logic -V r,Vr'dg ((('r >1r') /\Arrive(g,'r’)) — Arrive(g, 'r)) UNDECIDABLE

* Temporal logic - always (r = (g V next g)) 2EXPTIME - COMPLETE

* Booleanlogic-=(rAr’) > (rVvgA@'Vvyg) in EXPTIME

[]
Synthesis

Specification (declaration) System (implementation)
- N
. . * Program
* Logical expression) Synthesis N \
i ~ / i * State Machine i

* First order logic -V r,Vr'dg ((('r >1r') /\Arrive(g,'r’)) — Arrive(g, 'r)) UNDECIDABLE

———

(\
i * Temporal logic - always (r = (g V next g)) E 2EXPTIME - COMPLETE

* Booleanlogic-=(rAr’) > (rVvgA@'Vvyg) in EXPTIME

On Dependent Variables in Reactive Synthesis

Synthesis: From Specification to a Program

Input Output

Functional
systems

On Dependent Variables in Reactive Synthesis

Synthesis: From Specification to a Program

Functional Input Output
systems
4 R Input
Reactive ‘
systems «
\- J Output

On Dependent Variables in Reactive Synthesis

Reactive Synthesis

Environment System

Input ()

Output \ y,

Given: linear temporal logic specification ¢ over inputs and
outputs vars
Objective: synthesize a (reactive) system that will meet the
specification

On Dependent Variables in Reactive Synthesis

Reactive Synthesis - Example

Environment System

Input ()

Output \ y,

At every time step: if control requests data then either grant now or grant
at the next time

On Dependent Variables in Reactive Synthesis

Reactive Synthesis - Example

At every time step: if control requests data then
either grant now or grant at the next time

Temporal logic:

always (r — (g V next (g)))

r, g — propositional variables

On Dependent Variables in Reactive Synthesis

Reactive Synthesis - Example

At every time step: if control requests data then
either grant now or grant at the next time

Temporal logic: =0 Q=1]i=2]i=3] ..
env r r -r -l

always (r = (g V next (g))) sys g -9 g g

r, g — propositional variables

On Dependent Variables in Reactive Synthesis

Reactive Synthesis - Example

At every time step: if control requests data then
either grant now or grant at the next time

Temporal logic:

always (r — (g V next (g)))

r, g — propositional variables

Strategy Tree

On Dependent Variables in Reactive Synthesis

Reactive Synthesis Flow

Specification (LTL) ‘

always (r - (g V next (g)))

Non-det (Bﬁchi)\
Automaton
Exponential

‘ game graph ‘ Extract winning strategy

\ Blowup)

(" Deterministic) 4)

Exponential
\ Blowup)

(Poly- or quasi-poly-time)
\ J

g g

’ Mealy
. " Machine

g 8
G m (6

qx g2

(b) (c)

On Dependent Variables in Reactive Synthesis

Dependency in LTL

@ = —~x AAlways(Next x & (yiANext y;)) A (X, 2, Vi, Y2 V3)

On Dependent Variables in Reactive Synthesis

Dependency in LTL

Q =-x A AlwayS(Next x & (yrANext y;)) AN (X, 2, Vi V2 V3)

i=0 x|i] =0

i>0 x|1| always assigned to y:|i] A y:|i - 1]

On Dependent Variables in Reactive Synthesis

Why bother?

« 300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output
— Average of 41% dependent outputs in the 300 benchmarks

— 26 benchmarks where all outputs are dependent

On Dependent Variables in Reactive Synthesis

Why bother?

* 300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output

— Average of 41% dependent outputs in the 300 benchmarks
— 26 benchmarks where all outputs are dependent

Example from SYNTCOMP - ItI2dpa14
FG (=a > (GFpo V (GFp, A~GFp1))) AG((po A= A=p2) V (<Po Aps A=p2) V (<o A=py ADy))
P, is dependent on {p;,p,}

On Dependent Variables in Reactive Synthesis

Why bother?

« 300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output
— Average of 41% dependent outputs in the 300 benchmarks
— 26 benchmarks where all outputs are dependent

Example from SYNTCOMP - ItI2dpa14
FG (=a > (GFpo V (GFp, A~GFp1)) AG((po A= A=p2) V (<Po Aps A=p2) V (<o A=py ADy))
P, is dependent on {p;,p,}

* Dependency in Boolean Functional Synthesis
— [Akshay et al '18, '19, '20, '23; Golia et al'20, '21, '23; Mengel and Slivovsky'21; Peitl et al'19]
— Tools: Manthan, BFSS

On Dependent Variables in Reactive Synthesis

Why bother?

300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output
— Average of 41% dependent outputs in the 300 benchmarks

— 26 benchmarks where all outputs are dependent

Example from SYNTCOMP - Itl2dpai14
FG (=a > (GFpo V (GFp, A~GFp1)) AG((po A= A=p2) V (<Po Aps A=p2) V (<o A=py ADy))
P, is dependent on {p;,p,}
* Dependency significantly helps Boolean Functional Synthesis
— [Akshay et al '18, '19, '20, '23; Golia et al'20, '21, '23; Mengel and Slivovsky'21; Peitl et al'19]

— Tools: Manthan, BFSS
« Can we lift ideas from Boolean Functional Synthesis to Reactive Synthesis ?

— Boolean Synthesis by 1/0O Separation [CFTY'21] = LTL/LTLf synthesis [ABFTYW’21, DFPZ’23]

On Dependent Variables in Reactive Synthesis

Research Questions:

- How do we formally define dependency in reactive synthesis?
* How do we find dependent variables?
- How do we exploit dependency in reactive synthesis?

* Do experiments confirm the dependency benefits?

On Dependent Variables in Reactive Synthesis

Dependency in Boolean Formulas

In a Boolean formula F(x y;, ...yx), x isdependenton? S { yj, ... yi} if
For every two satisfying assignments g, ¢’ for F

ifoly = o'|y thenaol, = o',

On Dependent Variables in Reactive Synthesis

Dependency in Boolean Formulas

F=o (uAy))AN(xVys)

Then x is dependent on {y{, y,}in F

Finding dependent variables in Boolean formulas is not always obvious.

On Dependent Variables in Reactive Synthesis

Dependency in Boolean Formulas

F=o (uAy))AN(xVys)

Then x is dependent on {y{,v,}in F

Finding dependent variables in Boolean formulas is not always obvious.

Dependencies can exist even without syntactic equivalences

(Vi V=x2) A (X2 VAyl) A (X A X2) V (mXe A ays)): X dependent on X

On Dependent Variables in Reactive Synthesis

Dependency in LTL

In an LTL formula, ¢ (x, y1 ... k), x isdependenton Y C {y; ...y, }if:

On Dependent Variables in Reactive Synthesis

Dependency in LTL

In an LTL formula, ¢ (x, y1 ... vx), x isdependenton Y C {y, ...y, }if:

For every two infinite words w, w' that satisfy ¢,
Foreveryi = 0
Ifw[0..i—1] =w'[0...i — 1] and wli]|y = W'[i]]y

then wli]l, = w'[i]l,

(w[0, —1] is the empty word)

On Dependent Variables in Reactive Synthesis

Non-Dependent Variables

In an LTL formula, ¢ (x, y4 ... vx), x is non-dependenton Y C {y, ...y, }if:
There exist two infinite words w, w' that satisfy ¢,

there existsi = 0 s.t.

wl0..i—1] =w'[0..i— 1] ,wl[i]ly = W[i]|y

and wli]l, # w'li]l,

On Dependent Variables in Reactive Synthesis

Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}

On Dependent Variables in Reactive Synthesis

Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}

Accepting trace of ¢:

I T N N T
X 0
0
Yz :0
i 0

On Dependent Variables in Reactive Synthesis

Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}

Accepting trace of ¢:

N T N R
X 0 0
Vi 0 1)
V2 | 0 1
0 0

On Dependent Variables in Reactive Synthesis

Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

Accepting trace of ¢:

0 k1 =2

X

x is dependent on {y;, y,}

0 0 1
yi 0 1 1)
y; O 1 1
3 0 2 0O

=3 =4

On Dependent Variables in Reactive Synthesis

Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}

Accepting trace of ¢:

I N T T N T
X .ee

0 0 1 0
yi 0 1 1 1)
y; O 1 1 0
y; O 0 0 1

On Dependent Variables in Reactive Synthesis

Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

Accepting trace of ¢:

-|mm_

x is dependent on {y;, v,}

OOOO

© r»r | O

© r Rr|pr

0
1
0
1

1
0
1
1

\

On Dependent Variables in Reactive Synthesis

Finding Dependent Variables

LTL — Non-deterministic
Specification ¢ Blchi Automaton A,

- Standard construction: L(¢) = L(A,)

- Prune NBA A,: remove all states/edges that do not lead to accepting states.

« All our NBAs are pruned.

On Dependent Variables in Reactive Synthesis

Finding Dependent Variables

States s, s, are compatible if both s; and s, can be reached from start state on

same finite prefix of a word w

w[0,i — 1]

On Dependent Variables in Reactive Synthesis

Finding Dependent Variables

States s4, s, are compatible if both s; and s, can be reached from start state on

same finite prefix of a word w

We find all (unordered) pairs of compatible states in 4,

{(So, So), (SlJ Sl)J (Sz, Sz), (5'1, SZ)}

On Dependent Variables in Reactive Synthesis

Example of not-dependent variable

¢ x is non-dependent on {y,}

Accepting run
(x! Vi, y2)

0,0,1

(%, y1,¥2)

e = /\/\/\/

Accepting run

On Dependent Variables in Reactive Synthesis

Finding Dependent Variables

1. Y =Vars(p)
2. Pick next variablex €Y

3. For each pair of compatible states (s1, s3)

If x is non-dependent on Y\{x} from (s;,s;) then go to step 2

4. Mark x as dependentonY

5 Y=Y \{x}, gotostep2

On Dependent Variables in Reactive Synthesis

Finding Dependent Variables

1

Y =Vars(p)
Pick next variable x € Y

For each pair of compatible states (51, 53)

If x is non-dependent on Y\{x} from (s;,s;) then go to step 2

Mark x as dependentonY

5 Y=Y \{x}, gotostep2

-

* Gives a subset-maximal set of
dependent variables.
* Order of variables in Step 2 is

important.

(See paper for details)

_

~

/

On Dependent Variables in Reactive Synthesis

Utilizing dependency in synthesis

LTL specification ¢ (I, 0) where I are the inputs and O are the outputs
We focus on finding dependent output variables.

an output variable can be dependent on both input and other output variables

Synthesis Flow

ITL o EEEEE) NBA A, EEEEE) (symbolic)

Mealy Machine T,

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline

Q@
|
1.LTLto | %
NBA

2. Find
Dependent
outputs

3. Project
dependent
outputs

AI

4. Synthesize

? | strategy for

5.
Synthesize a
strategy for
dependents

non-
dependents

Ty

Tdep

6. Merge
strategies

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline

Previous Work

2. Find
Dependent
outputs

3. Project
dependent
outputs

AI

4. Synthesize

? | strategy for

5.
Synthesize a
strategy for
dependents

non-
dependents

Ty

Tdep

6. Merge
strategies

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline

3. Project | «, éls.tf;/tr;the:;zre
dependent —> 5Y
outputs nor-
dependents
Ty
S.
Synthesize a . 6.Merge
strategy for dep strategies
Previous Work We jUSt showed dependents a

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline

5.
Synthesize a
strategy for
Previous Work We just showed dependents

4. Synthesize
strategy for
non-
dependents

6. Merge
strategies

On Dependent Variables in Reactive Synthesis

Step 3: Project dependent variables

The projection process removes the dependent variables from all NBA edges labels.

Assume 0, is dependent on {i, 01} in @ (i, 04, 03).

o o e

Projection

> o (i, 01)

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline eviois Work

d.
" Synthesize a | 6.Merge
strategy for e strategies
Previous Work We just showed dependents ®

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline eviois Work

6. Merge
strategies

Previous Work

We just showed

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

Classical Flow

L

Det. Parity
Automaton

|

EXP

-

_

Mealy
Machine of
winning
strategy

~N

J

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

Classical Flow

NBA Det. Parity
Automaton

|

EXP

Our Flow

Polynomial

4)
Sequential
circuit of
transducer

I\ J

Based on implicit subset-construction

(See details in the paper)

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

Dependent outputs \ /[
E X1 X2 X3 Y2 'IY4 a

J Non-dep
output

o

Inputs

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’1b’, b’, b’ b’
Dependent outputs Inputs
Xl X2 _IX3 y2 —|y4
J | Non-dep
output

n: #statesinNBA @

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’:1b’> b’; b’k b’
A A
Dependent outputs Inputs - A A T A A
0 O ' Y
Y2 X1
Va Boolean circuit of size
’ O(|inps| + [non-dep outs|) I
Xy —> X3
/
A

| -
J Non-dep A AL A A
output SR L

n: #statesinNBA @

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables

Outputs: Symbolic Mealy machine for dependent output variables
b’ob’1b’; b’ b’« b’,

Inputs T

Dependent outputs

o

J Non-dep
output

’E bobib: b b« b

n: #statesinNBA @~

X1 X2 71X3 Y2 Y4

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’.b’, b’, b’ b’
Dependent outputs Inputs ﬁ
[y2 Xl
R Ya /'_>
—
X2 >— -

J Non-dep
output

’ E bobib: b b« b

n: #statesinNBA @~

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’1b’; b’, b’ b
Dependent outputs Inputs
V
y2 P AR .
Xl X2 _IX3 y2 —|y4 y4

X2 D

J | Non-dep >
output
bn

n: #statesinNBA @

On Dependent Variables in Reactive Synthesis

Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’:1b’> b’; b’k b’
Dependent outputs i
| YHIIE ol T \ X1
Y2
Va— Boolean circuit of size
X> O(|BDD])
X3
Non-dep
output

n: #states in NBA

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline eviois Work

|

We just showed

Previous Work

On Dependent Variables in Reactive Synthesis

Step 6: Merge Transducers

Our transducers are described as a sequential circuits.
01, ..., 0 are non-dependent variables
Ok+1, -+, Oy are dependent variables

On Dependent Variables in Reactive Synthesis

Step 6: Merge Transducers

Ok+1 Om
I I
Dependent
Transducer
dep
qu
04 Ok
| .. | oo .
Non-dependent
Transducer
I
Ty

On Dependent Variables in Reactive Synthesis

Step 6: Merge Transducers

* Merge is simply connecting outputs and inputs.

Dependent

Transducer

dep
Tﬁo

Non-dependent
Transducer
Ty

On Dependent Variables in Reactive Synthesis

Synthesis Pipeline

On Dependent Variables in Reactive Synthesis

DepSynt Overview

* We implemented the synthesis pipeline in a tool called DepSynt.

* DepSynt is developed in C++ using Spot [Duret-Lutz. 14] and our own implementation.

* Time for dependency-check is limited to 12 seconds.

* Decided based on empirical results.

* We compared DepSynt with Ltlsynt (Spot) [Michaud,Colange, 2018] and Strix [Meyer, Sickert,

Luttenberger 2018].

On Dependent Variables in Reactive Synthesis

Non-dependent vars < 3

* In benchmarks with at most 3 non-dependent variables.
* DepSynt outperforms state-of-the-art tools.

0%y Ao S A A T A A A T
E o dEpS}’ﬂt H H H H H . .

105 4{ —— spnt—acd ______________________ gl
1| —— spot-ds | |

IGE _; o= Spot-lar L |

spot-sd

l[}l _E [— Stl‘lx _ _

10° 4

Time (seconds)

0 20 40 60 80 100 120 140 160
instances

On Dependent Variables in Reactive Synthesis

Non-dependent vars > 3

* In benchmarks with at more than 3 non-dependent variables.

* DepSynt is comparable with the other tools.

Time (seconds)

10* 4=

1| —=— spot-ds
H}E_;

10-1 4ot~

IDI _§

107 3

—a— spot-acd | R R S P3O OO NSO

e SPOLAr o — a0 00 S N
spot-sd

10-2 45555

10— 5

10+ : : : : : :
0 20 40 60 80 100 120

instances

On Dependent Variables in Reactive Synthesis

Depsynt - Tlme d|Str|bUﬁ0n Search for dependent variables

Build NBA

* How long DepSynt is spending on each phase - normalized. Synthesis non-dependent variables

. Synthesis dependent variables
* The benchmarks are sorted by total duration. / .

| e

Benchmarks

1.

=1

0.

[=-]

0.

[=2]

0.

.

0.

[a~]

0.0

On Dependent Variables in Reactive Synthesis

Conclusion

* Formal definition of LTL dependency.
* Algorithm to find dependent variables.
* Framework that utilizes dependency for Reactive Synthesis.

* DepSynt confirms the dependency benefits.

On Dependent Variables in Reactive Synthesis

Conclusion

* Formal definition of LTL dependency

* Algorithm to find dependent variables.

* Framework that utilizes dependency for Reactive Synthesis.
* DepSynt confirms the dependency benefits.

* Future work: exploring more general notions of dependency.

	On Dependent Variables in Reactive Synthesis
	Systems with Input/Output Interaction
	Systems with Input/Output Interaction (2)
	Systems with Input/Output Interaction (3)
	Systems with Input/Output Interaction (4)
	Systems with Input/Output Interaction (5)
	Synthesis
	Synthesis (2)
	Synthesis (3)
	Synthesis: From Specification to a Program
	Synthesis: From Specification to a Program (2)
	Reactive Synthesis
	Reactive Synthesis - Example
	Reactive Synthesis - Example (2)
	Slide 15
	Reactive Synthesis - Example (8)
	Reactive Synthesis - Example (9)
	Special Property: Dependency in LTL
	Special Property: Dependency in LTL (2)
	Why dependency in reactive synthesis is important?
	Why dependency in reactive synthesis is important? (2)
	Slide 22
	Slide 23
	Research Questions:
	Dependency in Boolean Formulas
	Dependency in Boolean Formulas - Example
	Slide 27
	Dependency in LTL
	Dependency in LTL (2)
	Non-Dependent Variables
	Dependency in LTL - Example
	Dependency in LTL - Example (2)
	Dependency in LTL - Example (3)
	Dependency in LTL - Example (4)
	Dependency in LTL - Example (5)
	Dependency in LTL - Example (6)
	Finding Dependent Variables
	Finding Dependent Variables (2)
	Finding Dependent Variables (3)
	Example of not-dependent variable
	Finding Dependent Variables (4)
	Finding Dependent Variables (5)
	Utilizing dependency in synthesis
	Synthesis Pipeline
	Synthesis Pipeline (2)
	Synthesis Pipeline (3)
	Synthesis Pipeline (4)
	Step 3: Project dependent variables
	Synthesis Pipeline (5)
	Synthesis Pipeline (6)
	Step 5: Dependent variables synthesis
	Step 5: Dependent variables synthesis (2)
	Step 5: Dependent variables synthesis (3)
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Synthesis Pipeline (7)
	Step 6: Merge Transducers
	Step 6: Merge Transducers (2)
	Step 6: Merge Transducers (3)
	Synthesis Pipeline (8)
	DepSynt Overview
	Non-dependent vars ≤ 3
	Non-dependent vars > 3
	DepSynt - Time distribution
	Conclusion
	Conclusion (2)

