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Reactive Synthesis

Environment System

Input ( )

Output \ y,

Given: linear temporal logic specification ¢ over inputs and
outputs vars
Objective: synthesize a (reactive) system that will meet the
specification
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Reactive Synthesis - Example

At every time step: if control requests data then
either grant now or grant at the next time

Temporal logic:

always (r — (g V next (g)))

r, g — propositional variables
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Reactive Synthesis - Example

At every time step: if control requests data then
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always (r = (g V next (g))) sys g -9 g g

r, g — propositional variables
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Reactive Synthesis - Example

At every time step: if control requests data then
either grant now or grant at the next time

Temporal logic:

always (r — (g V next (g)))

r, g — propositional variables

Strategy Tree
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Dependency in LTL

Q =-x A AlwayS(Next x & (yrANext y; )) AN (X, 2, Vi V2 V3)

i=0 x|i] =0

i>0 x|1| always assigned to y:|i] A y:|i - 1]



On Dependent Variables in Reactive Synthesis

Why bother?

« 300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output
— Average of 41% dependent outputs in the 300 benchmarks

— 26 benchmarks where all outputs are dependent



On Dependent Variables in Reactive Synthesis

Why bother?

* 300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output

— Average of 41% dependent outputs in the 300 benchmarks
— 26 benchmarks where all outputs are dependent

Example from SYNTCOMP - ItI2dpa14
FG (=a > (GFpo V (GFp, A~GFp1))) AG((po A= A=p2) V (<Po Aps A=p2) V (<o A=py ADy))
P, is dependent on {p;,p,}



On Dependent Variables in Reactive Synthesis

Why bother?

« 300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output
— Average of 41% dependent outputs in the 300 benchmarks
— 26 benchmarks where all outputs are dependent

Example from SYNTCOMP - ItI2dpa14
FG (=a > (GFpo V (GFp, A~GFp1)) AG((po A= A=p2) V (<Po Aps A=p2) V (<o A=py ADy))
P, is dependent on {p;,p,}

* Dependency in Boolean Functional Synthesis
— [Akshay et al '18, '19, '20, '23; Golia et al'20, '21, '23; Mengel and Slivovsky'21; Peitl et al'19]
— Tools: Manthan, BFSS



On Dependent Variables in Reactive Synthesis

Why bother?

300 out of 1141 SYNTCOMP (2023) benchmarks have at least 1 dependent output
— Average of 41% dependent outputs in the 300 benchmarks

— 26 benchmarks where all outputs are dependent

Example from SYNTCOMP - Itl2dpai14
FG (=a > (GFpo V (GFp, A~GFp1)) AG((po A= A=p2) V (<Po Aps A=p2) V (<o A=py ADy))
P, is dependent on {p;,p,}
* Dependency significantly helps Boolean Functional Synthesis
— [Akshay et al '18, '19, '20, '23; Golia et al'20, '21, '23; Mengel and Slivovsky'21; Peitl et al'19]

— Tools: Manthan, BFSS
« Can we lift ideas from Boolean Functional Synthesis to Reactive Synthesis ?

— Boolean Synthesis by 1/0O Separation [CFTY'21] = LTL/LTLf synthesis [ABFTYW’21, DFPZ’23]
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Research Questions:

- How do we formally define dependency in reactive synthesis?
* How do we find dependent variables?
- How do we exploit dependency in reactive synthesis?

* Do experiments confirm the dependency benefits?
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Dependency in Boolean Formulas

In a Boolean formula F(x y;, ...yx), x isdependenton? S { yj, ... yi} if
For every two satisfying assignments g, ¢’ for F

ifoly = o'|y thenaol, = o',
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Dependency in Boolean Formulas

F=o (uAy))AN(xVys)

Then x is dependent on {y{, y,}in F

Finding dependent variables in Boolean formulas is not always obvious.
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Dependency in Boolean Formulas

F=o (uAy))AN(xVys)

Then x is dependent on {y{,v,}in F

Finding dependent variables in Boolean formulas is not always obvious.

Dependencies can exist even without syntactic equivalences

(Vi V=x2) A (X2 VAyl) A (X A X2) V (mXe A ays)): X dependent on X
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Dependency in LTL

In an LTL formula, ¢ (x, y1 ... k), x isdependenton Y C {y; ...y, }if:
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Dependency in LTL

In an LTL formula, ¢ (x, y1 ... vx), x isdependenton Y C {y, ...y, }if:

For every two infinite words w, w' that satisfy ¢,
Foreveryi = 0
Ifw[0..i—1] =w'[0...i — 1] and wli]|y = W'[i]]y

then wli]l, = w'[i]l,

(w[0, —1] is the empty word)
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Non-Dependent Variables

In an LTL formula, ¢ (x, y4 ... vx), x is non-dependenton Y C {y, ...y, }if:
There exist two infinite words w, w' that satisfy ¢,

there existsi = 0 s.t.

wl0..i—1] =w'[0..i— 1] ,wl[i]ly = W[i]|y

and wli]l, # w'li]l,
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@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}
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Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}

Accepting trace of ¢:

I T N N T
X 0
0
Yz :0
i 0
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Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}

Accepting trace of ¢:

N T N R
X 0 0
Vi 0 1)
V2 | 0 1
0 0
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Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

Accepting trace of ¢:

0 k1 =2

X

x is dependent on {y;, y,}

0 0 1
yi 0 1 1)
y; O 1 1
3 0 2 0O

=3 =4
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Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

x is dependent on {y;, y,}

Accepting trace of ¢:

I N T T N T
X .ee

0 0 1 0
yi 0 1 1 1)
y; O 1 1 0
y; O 0 0 1
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Dependency in LTL - Example

@ = —x A Always(Next x & (y; A Next yz)) A Finally (y53)

Accepting trace of ¢:

-|mm_

x is dependent on {y;, v,}

OOOO

© r»r | O

© r Rr|pr

0
1
0
1

1
0
1
1

\
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Finding Dependent Variables

LTL — Non-deterministic
Specification ¢ Blchi Automaton A,

- Standard construction: L(¢) = L(A,)

- Prune NBA A,: remove all states/edges that do not lead to accepting states.

« All our NBAs are pruned.
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Finding Dependent Variables

States s, s, are compatible if both s; and s, can be reached from start state on

same finite prefix of a word w

w[0,i — 1]
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Finding Dependent Variables

States s4, s, are compatible if both s; and s, can be reached from start state on

same finite prefix of a word w

We find all (unordered) pairs of compatible states in 4,

{(So, So), (SlJ Sl)J (Sz, Sz), (5'1, SZ)}
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Example of not-dependent variable

¢ x is non-dependent on {y,}

Accepting run
(x! Vi, y2)

0,0,1

(%, y1,¥2)

e = /\/\/\/

Accepting run
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Finding Dependent Variables

1. Y =Vars(p)
2. Pick next variablex €Y

3. For each pair of compatible states (s1, s3)

If x is non-dependent on Y\{x} from (s;,s;) then go to step 2

4. Mark x as dependentonY

5 Y=Y \{x}, gotostep2
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Finding Dependent Variables

1

Y =Vars(p)
Pick next variable x € Y

For each pair of compatible states (51, 53)

If x is non-dependent on Y\{x} from (s;,s;) then go to step 2

Mark x as dependentonY

5 Y=Y \{x}, gotostep2

-

* Gives a subset-maximal set of
dependent variables.
* Order of variables in Step 2 is

important.

(See paper for details)

\_

~

/
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Utilizing dependency in synthesis

LTL specification ¢ (I, 0) where I are the inputs and O are the outputs
We focus on finding dependent output variables.

an output variable can be dependent on both input and other output variables

Synthesis Flow

ITL o EEEEE) NBA A, EEEEE)  (symbolic)

Mealy Machine T,
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Synthesis Pipeline
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Synthesis Pipeline

5.
Synthesize a
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Step 3: Project dependent variables

The projection process removes the dependent variables from all NBA edges labels.

Assume 0, is dependent on {i, 01} in @ (i, 04, 03).

o o e

Projection

> o (i, 01)
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Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

Classical Flow
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

Classical Flow

NBA Det. Parity
Automaton

|

EXP

Our Flow

Polynomial

4 )
Sequential
circuit of
transducer

I\ J

Based on implicit subset-construction

(See details in the paper)
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

Dependent outputs \ /[
E X1 X2 X3 Y2 'IY4 a

J Non-dep
output
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Inputs
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’1b’, b’, b’ b’
Dependent outputs Inputs
Xl X2 _IX3 y2 —|y4
J | Non-dep
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’:1b’> b’; b’k b’
A A
Dependent outputs Inputs - A A T A A
0 O ' Y
Y2 X1
Va Boolean circuit of size
’ O( |inps| + [non-dep outs|) I
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables

Outputs: Symbolic Mealy machine for dependent output variables
b’ob’1b’; b’ b’« b’,

Inputs T

Dependent outputs

o

J Non-dep
output

’E bobib: b b« b
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’.b’, b’, b’ b’
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables
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Step 5: Dependent variables synthesis

Inputs: original inputs and non-dependent output variables
Outputs: Symbolic Mealy machine for dependent output variables

b’ob’:1b’> b’; b’k b’
Dependent outputs i
| YHIIE ol T \ X1
Y2
Va— Boolean circuit of size
X> O( |BDD])
X3
Non-dep
output

n: #states in NBA
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Step 6: Merge Transducers

Our transducers are described as a sequential circuits.
01, ..., 0 are non-dependent variables
Ok+1, -+, Oy are dependent variables
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Step 6: Merge Transducers

Ok+1 Om
I I
Dependent
Transducer
dep
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Step 6: Merge Transducers

* Merge is simply connecting outputs and inputs.

Dependent

Transducer

dep
Tﬁo

Non-dependent
Transducer
Ty




On Dependent Variables in Reactive Synthesis

Synthesis Pipeline
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DepSynt Overview

* We implemented the synthesis pipeline in a tool called DepSynt.

* DepSynt is developed in C++ using Spot [Duret-Lutz. 14] and our own implementation.

* Time for dependency-check is limited to 12 seconds.

* Decided based on empirical results.

* We compared DepSynt with Ltlsynt (Spot) [Michaud,Colange, 2018] and Strix [Meyer, Sickert,

Luttenberger 2018].
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Non-dependent vars < 3

* In benchmarks with at most 3 non-dependent variables.
* DepSynt outperforms state-of-the-art tools.

0%y Ao S A A T A A A T
E o dEpS}’ﬂt H H H H H . .

105 4{ —— spnt—acd ______________________ ...................... ...................... ..................... gl
1| —— spot-ds | |

IGE _; o= Spot-lar .. ...................... ...................... ...................... L ..................... | .........

spot-sd

l[}l _E [ — Stl‘lx _ ...................... ...................... ...................... _ .............................

10° 4

Time (seconds)

0 20 40 60 80 100 120 140 160
instances
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Non-dependent vars > 3

* In benchmarks with at more than 3 non-dependent variables.

* DepSynt is comparable with the other tools.

Time (seconds)

10* 4=

1| —=— spot-ds
H}E_;

10-1 4ot~

IDI _§

107 3

—a— spot-acd | R R S P3O OO NSO

e SPOLAr o — a0 00 S N
spot-sd

10-2 45555
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Depsynt - Tlme d|Str|bUﬁ0n Search for dependent variables

Build NBA

* How long DepSynt is spending on each phase - normalized. Synthesis non-dependent variables

. Synthesis dependent variables
* The benchmarks are sorted by total duration. / .

| e

Benchmarks

1.

=1

0.

[=-]

0.

[=2]
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.
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Conclusion

* Formal definition of LTL dependency.
* Algorithm to find dependent variables.
* Framework that utilizes dependency for Reactive Synthesis.

* DepSynt confirms the dependency benefits.
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Conclusion

* Formal definition of LTL dependency

* Algorithm to find dependent variables.

* Framework that utilizes dependency for Reactive Synthesis.
* DepSynt confirms the dependency benefits.

* Future work: exploring more general notions of dependency.
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